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1 History of updates on RQC

1.1 Updates for April 21st, 2020

• New results on rank metric [5, 6] now provide a clear and better understanding of
algebraic attacks against the rank syndrome decoding problem. As a consequence, we
have introduced a minor modification to the protocol. In the encryption, r1, r2 and
e no longer share the same support but instead r1 and r2 share a support of size w1

and e has a support of size w1 + w2 such that Supp(r1, r2) ⊂ Supp(e).

This minor modification enables us to keep low parameters for the scheme even if the
rank weights of the instances have been increased. It leads us to introduce a new
problem where the support of the error is not homogeneous: the Non Homogeneous
IRSD problem (Section 2.1.4). This problem is a small variation on the IRSD problem,
and it has a straightforward reduction from the IRSD problem for rank weight w1.
For combinatorial attacks, the increase of parameters permits to still have a sufficient
reduction to the IRSD problem for rank weight w1. For algebraic attacks, we consider
a specialization of the recent best known attacks in this case (Section 6, from [6]).

• We have updated parameters for our scheme (increase of order of 40% for RQC-I-128
compared to Round 2 submission, see Table 3).

• We provide an optimized implementation leveraging AVX and CLMUL instructions.

• Our implementations are now implemented in a constant-time way whenever relevant
and they should not leak any sensitive information with respect to timing attacks.

• Our implementations no longer rely on third party libraries for finite field arithmetic.

• We welcome Maxime Bros as a new member of our team.

• For 128 bits of security, we obtain the following sizes (in bytes), performances (in
kilocycles) and Decryption Failure Rate for RQC:

Public Key Ciphertext KeyGen Encaps Decaps DFR
1,874 3,652 370 530 2580 0

1.2 Updates between Round 1 and Round 2

• RQC now uses ideal codes instead of quasi-cyclic codes.

• The parameters of the scheme have been updated so that the weight of the error,
which is the most important parameter for the security, increases regularly with each
level of security. In practice, it leads to a small increase of the parameters.
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• The supporting documentation has been reorganized for clarification. Besides, addi-
tional details on Gabidulin codes, quantum speed-up on known attacks and resistance
to timing attacks have been added.

• The reference implementation have been improved in several ways. In particular,
finite field arithmetic now relies on NTL rather than MPFQ.

• Two additional members have been added to the RQC proposal: Alain Couvreur
and Adrien Hauteville.
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2 Specifications
In this section, we introduce RQC, an encryption scheme based on coding theory. RQC

stands for Rank Quasi-Cyclic. This proposal has been published in IEEE Transactions
on Information Theory [1]. RQC is a code-based public key cryptosystem with several
desirable properties:

• It is proven IND-CPA assuming the hardness of (a decisional version of) the Rank
Syndrome Decoding problem on structured codes. By construction, RQC perfectly fits
the recent KEM-DEM transformation of [15], and allows to get an hybrid encryption
scheme with strong security guarantees (IND-CCA2).

• In contrast with most code-based cryptosystems, the assumption that the family of
codes being used is indistinguishable among random codes is no longer required.

• The decryption algorithm is deterministic so the Decryption Failure Rate (DFR) is
zero.

• It features more attractive parameters than most of the Hamming based proposals.

Organization of the Specifications. This section is organized as follows: we provide
the required background in Sec. 2.1, we make some recalls on encryption and security in
Sec. 2.1.5 then present our proposal in Sec. 2.2. Concrete sets of parameters are provided
in Sec. 2.4.

2.1 Preliminaries

2.1.1 General definitions

In the following document, q denotes a power of a prime p. The finite field with q elements
is denoted by Fq and more generally for any positive integer m the finite field with qm

elements is denoted by Fqm . We will frequently view Fqm as an m-dimensional vector space
over Fq.

We use bold lowercase (resp. uppercase) letters to denote vectors (resp. matrices).
Let P ∈ Fq[X] a polynomial of degree n. We can identify the vector space Fnqm with the

ring Fqm [X]/〈P 〉, where 〈P 〉 denotes the ideal of Fqm [X] generated by P .

Ψ : Fnqm ' Fqm [X]/〈P 〉

(v0, . . . , vn−1) 7→
n−1∑
i=0

viX
i

For u,v ∈ Fnqm , we define their product similarly as in Fqm [X]/〈P 〉: w = uv ∈ Fnqm is
the only vector such that Ψ(w) = Ψ(u)Ψ(v). In order to lighten the formula, we will omit
the symbol Ψ in the future.
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To a vector v ∈ Fnqm we can associate an n × n square matrix with entries in Fnqm
corresponding to the product by v. Indeed,

u · v = u(X)v(X) (mod P )

=
n−1∑
i=0

uiX
iv(X) (mod P )

=
n−1∑
i=0

ui(X
iv(X) mod P )

= (u0, . . . , un−1)


v(X) mod P
Xv(X) mod P

...
Xn−1v(X) mod P

 .

Such a matrix is called the ideal matrix generated by v and P , or simply by v when
there is no ambiguity in the choice of P .

Definition 2.1.1 (Ideal Matrix). Let P ∈ Fq[X] be a polynomial of degree n and v ∈ Fnqm.
The ideal matrix generated by v is the n× n square matrix denoted IM(v) of the form:

IM(v) =


v

Xv mod P
...

Xn−1v mod P

 .

As a consequence, the product of two elements of Fqm [X]/〈P 〉 is equivalent to the usual
vector-matrix product:

u · v = uIM(v) = IM(u)Tv = v · u.

Definition 2.1.2 (Rank metric over Fnqm). Let x = (x1, . . . , xn) ∈ Fnqm and (β1, . . . , βm) ∈
Fmqm be a basis of Fqm viewed as an m-dimensional vector space over Fq. Each coordinate xj
is associated to a vector of Fmq in this basis: xj =

∑m
i=1 xijβi. The m× n matrix associated

to x is given by M(x) = (xij)16i6m
16j6n

.

The rank weight ‖x‖ of x is defined as

‖x‖ def
= RankM(x).

The associated distance d(x,y) between elements x and y in Fnqm is defined by d(x,y) =
‖x− y‖.

Definition 2.1.3 (Fqm-linear code). An Fqm-linear code C of dimension k and length n is
a subspace of dimension k of Fnqm embedded with the rank metric. It is denoted [n, k]qm.

Such a code C can be represented in two equivalent ways:
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• by a generator matrix G ∈ Fk×nqm . Each row of G is an element of a basis of C,

C = {xG,x ∈ Fkqm}.

• by a parity-check matrix H ∈ F(n−k)×n
qm . Each row of H determines a parity-check

equation verified by the elements of C:

C = {x ∈ Fnqm : HxT = 0}.

HvT is called the syndrome of v (with respect to H).

We say that G (respectively H) is under systematic form if and only if it is of the form
(Ik|A) (respectively (In−k|B)).

Definition 2.1.4 (Support of a word). Let x = (x1, . . . , xn) ∈ Fnqm. The support E of x,
denoted Supp(x), is the Fq-subspace of Fqm generated by the coordinates of x:

E = 〈x1, . . . , xn〉Fq

and we have dim(E) = ‖x‖.

The number of supports of dimension w of Fqm is given by the Gaussian coefficient[
m
w

]
q

=
w−1∏
i=0

qm − qi

qw − qi
·

2.1.2 Ideal codes

One of the drawbacks of code-based cryptography is the size of the keys. Indeed, to represent
an [n, k]qm code with a systematic matrix, we need k(n − k) symbols in Fqm , or k(n −
k)m dlog qe bits. In order to reduce the size of the representation of a code, we introduce
the family of ideal codes, which are basically codes with a systematic generator matrix
formed with blocks of ideal matrices. More formally,

Definition 2.1.5 (Ideal codes). Let P (X) ∈ Fq[X] be a polynomial of degree n. An
[ns, nt]qm code C is an (s, t)-ideal code if its generator matrix under systematic form is
of the form

G =

 IM(g1,1) . . . IM(g1,s−t)

Itn
... . . . ...

IM(gt,1) . . . IM(gt,s−t)


where (gi,j)i∈[1..s−t]

j∈[1..t]
are vectors of Fnqm. In this case, we say that C is generated by the (gi,j).
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It would be somewhat more natural to choose the generator matrix to be made up of
s× t ideal matrices, rather than to require the code to admit a systematic generator matrix.
However, if m and n are two different prime numbers and if P is irreducible, a non-zero
ideal matrix is always non-singular. To prove this, we need the following lemma:
Lemma 1. Let m and n be two different prime numbers. Let P ∈ Fq[X] be an irreducible
polynomial of degree n and U ∈ Fqm [X] a non zero polynomial of degree at most n − 1.
Then P and U are co-prime in Fqm [X].

Proof. We will show that P and U have no common root. Let Z(P ) (respectively Z(U))
be the set of the roots of P (respectively U) in an algebraic closure of Fq.

Since P is irreducible of degree n, its roots generate Fqn

=⇒ Z(P ) ⊂ Fqn\Fq
Since U is of degree at most n− 1, its roots belong to Fqm(n−1)! .

But GCD(n,m(n− 1)!) = 1 when m and n are two different prime numbers. Thus

Fqm(n−1)! ∩ Fqn = Fq =⇒ Z(P ) ∩ Z(U) = ∅

Hence, P and U are co-prime.

Now, let u ∈ Fnqm a non zero vector and P ∈ Fq[X] an irreducible polynomial of degree
n. According to the previous lemma, there exists a vector v ∈ Fnqm such that

uv = 1 (mod P )

⇐⇒ uIM(v) = (1, 0, . . . , 0)

⇐⇒ IM(u)IM(v) = In

This demonstrates that every block of ideal matrix of G is non-singular, hence C can be
represented under systematic form.

All the parameters we propose in Section 2.4 verify these conditions.

Remark 2.1. With this definition, ideal codes can be seen as a generalization of Quasi-
Cyclic codes. Indeed, the generator matrix under systematic form of a Quasi-Cyclic code
[9] is of the same form, except that the ideal matrices are replaced by circulant matrices.
Yet, an n× n circulant matrix can be seen as an element of Fqm [X]/〈Xn − 1〉. Thus ideal
codes only differ from Quasi-Cyclic codes by the choice of the polynomial P .

In our scheme, we only use [ns, n]qm ideal codes. In order to shorten the notation, we
denote these codes an s-ideal code. If C is an [sn, n] ideal code generated by (g1, . . . ,gs−1),
we have C = {(u,ug1, . . . ,ugs−1),u ∈ Fnqm}.

We need to be careful when we use this notation in the case of parity-check matrix.
Indeed, the parity-check matrix under systematic form of C is of the form:

H =

 IM(h1)
T

In(s−1)
...

IM(hs−1)
T

 . (1)

10



Thus, if σ = (σ1 . . .σs−1) ∈ Fs(n−1)qm is the syndrome of an error e = (e1 . . . es−1) ∈ Fnsqm , the
parity-check equations

HeT = σT

are equivalent to ei + hies−1 = σi for 1 6 i 6 s− 1.
Bounds for rank metric codes. The classical bounds for Hamming metric have
straightforward rank metric analogues.
Singleton Bound. The classical Singleton bound for linear [n, k] codes of minimum rank
r over Fqm applies naturally in the rank metric setting. It works in the same way as for
linear codes (by finding an information set) and reads r ≤ 1 + n − k. When n > m this
bound can be rewritten [17] as

r ≤ 1 +

⌊
(n− k)m

n

⌋
. (2)

Codes achieving this bound are called Maximum Rank Distance codes (MRD).

Deterministic Decoding. Unlike with the Hamming metric, there do not exist many
families of codes for the rank metric which are able to decode rank errors efficiently up to a
given weight. When we are dealing with deterministic decoding, there is essentially only one
known family of rank codes which can decode efficiently: the family of Gabidulin codes [8].
More details about these codes are provided in the next section. In a nutshell, they are
defined over Fqm and for k ≤ n ≤ m, Gabidulin codes of length n and dimension k are
optimal and satisfy the Singleton bound for m = n with minimum distance d = n− k + 1.
They can decode up to bn−k

2
c rank errors in a deterministic way.

Probabilistic Decoding. There also exists a simple family of codes which has been
described for the subspace metric in [22] and can be straightforwardly adapted to the rank
metric. These codes reach asymptotically the equivalent of the Gilbert-Varshamov bound
for the rank metric, however their non-zero probability of decoding failure makes them less
interesting for the cases we consider in this paper.

2.1.3 Gabidulin codes and their decoding

Gabidulin codes were introduced in 1985 [8]. These codes are analog to Reed-Solomon
codes in Hamming metric [21], but involve q-polynomials instead of regular ones. They
have therefore a strong algebraic structure. The notion of q-polynomials was introduced by
Ore [19], we hereafter give some background.

Definition 2.1.6 (q-polynomials). The set of q-polynomials over Fqm is the set of polyno-
mials with the following shape:{

P (X) =
r∑
i=0

piX
qi , with pi ∈ Fqm and pr 6= 0

}
.

The q-degree of a q-polynomial P is defined as degq(P ) = r.
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Definition 2.1.7 (Ring of q-polynomials). The set of q-polynomials over Fqm is a non-
commutative ring when considered with the following operations:

• Addition: (P +Q)(X) = P (X) +Q(X)

• Composition: (P ◦Q)(X) = P [Q(X)]

Due to their structure, the q-polynomials are inherently related to decoding problems
in the rank metric as stated by the following propositions.

Theorem 2.2 ([19]). Any Fq-subspace of Fqm of dimension r is the set of the roots of a
unique unitary q-polynomial P such that degq(P ) = r.

Corollary 2.1. Let x = (x1, x2, . . . , xn) ∈ Fnqm and V be the unitary q-polynomial of small-
est q-degree such that V (xi) = 0 for 1 ≤ i ≤ n, then ‖x‖ = r if and only if degq(V ) = r.

Gabidulin codes can be thought as the evaluation of q-polynomials of bounded degree
on the coordinates of a vector over Fqm .

Definition 2.1.8 (Gabidulin codes). Let k, n,m ∈ N such that k 6 n 6 m. Let g =
(g1, . . . , gn) be a Fq linearly independent family of elements of Fqm. The Gabidulin code
Gg(n, k,m) is the following code [n, k]qm:{

P (g), degq P < k
}

where P (g) := (P (g1), . . . , P (gv)).

A generator matrix for Gg is given by:

G =


g1 . . . gn
gq1 . . . gqn
... . . . ...

gq
k−1

1 . . . gq
k−1

n

 .

These codes benefit from an efficient decoding algorithm correcting up to
⌊
n−k
2

⌋
errors

in a deterministic way [8].

Decoding Gabidulin codes. The algorithm employed in order to decode Gabidulin
codes has been proposed in [18] and later improved in [4]. Let Gg denote a Gabidulin code
over Fqm of length n and dimension k generated by the vector g ∈ Fnqm . The decoding
problem is stated as follows.

Definition 2.1.9 (Decoding(y,Gg, t) [18]). Find, if it exists, c ∈ Gg and e with ‖e‖ ≤ t
such that y = c + e.

One can decode Gabidulin codes using the q-polynomial reconstruction problem:
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Definition 2.1.10 (Reconstruction(y,g, k, t) [18]). Find a tuple (V, f) where V is a
non-zero q-polynomial with degq(V ) ≤ t and f is a q-polynomial with degq(f) < k such
that:

V (yi) = V ◦ f(gi) with 1 ≤ i ≤ n

When t is less than the code’s decoding capacity b(n − k)/2c, the solution of
Reconstruction(y,g, k, t) is unique. Moreover, from a solution of the q-polynomial re-
construction problem, one can get a solution to the decoding problem.

Theorem 2.3 ([18]). If (V, f) is a solution of Reconstruction(y,g, k, t), then (c =
f(g), e = y − c) is a solution of Decoding(y,Gg, t).

We now consider the linearized variant of the q-polynomial reconstruction problem.

Definition 2.1.11 (Reconstruction2(y,g, k, t) [18]). Find a tuple (V,N) where V is a
non-zero q-polynomial with degq(V ) ≤ t and N is a q-polynomial with degq(N) ≤ k + t− 1
such that:

V (yi) = N(gi) with 1 ≤ i ≤ n

When t is less than the code’s decoding capacity b(n− k)/2c, the two reconstruction prob-
lems are equivalent.

Theorem 2.4 ([18]). If (V, f) is a solution of Reconstruction(y,g, k, t), then (V, V ◦ f)
is a solution of Reconstruction2(y,g, k, t).

If t ≤ b(n − k)/2c and if (V,N) is a solution of Reconstruction2(y,g, k, t), then
(V, f) with f defined as the quotient of N by V by left euclidean division in the ring of
q-polynomials is a solution of Reconstruction(y,g, k, t).

The algorithm described in [4] (see Section 4, Algorithm 5) can be used in order to solve
the Reconstruction2(y,g, k, t) problem. This algorithm can be decomposed in two steps:

1. Initialization step: Two pairs of q-polynomials (N0, V0) and (N1, V1) satisfying
V0(yi) = N0(gi) and V1(yi) = N1(gi) for 1 ≤ i ≤ k are computed. To do so, N0 is de-
fined as the annihilator q-polynomial on g1, . . . , gk, N1 is defined as the q-polynomial
interpolating y1, . . . , yk on g1, . . . , gk while V0(X) = 0 and V1(X) = X.

2. Interpolation step: Iteratively, the q-degrees of (N0, V0) and (N1, V1) are increased
using a recurrence relation ensuring that if the interpolation conditions V (yi) = N(gi)
for 1 ≤ i ≤ j are satisfied at step j, then they are also satisfied at step j + 1.
Besides, this construction ensures that at least one of the pairs satisfies the final
degree conditions degq(V ) ≤ t and degq(N) ≤ k + t − 1 when the q-polynomials are
initialized according to the aforementioned Initialization step.

The correctness of this algorithm is provided in [4], Theorem 10. Using a solution of
Reconstruction2(y,g, k, t), one can solve Decoding(y,Gg, t) for Gabidulin codes as fol-
lows:

13



Definition 2.1.12 (Algorithm for Decoding(y,Gg, t) [18, 4]).

1. Find a solution (V,N) of Reconstruction2(y,g, k, t)

2. Find f by computing the left euclidean division of N by V

3. Retrieve the codeword c by evaluating f in g

Theorem 2.5 ([4]). The complexity of solving Decoding(y,Gg, t) by using the algorithm
described in Definition 2.1.12 is O(n2) operations in Fqm.

Note: Gabidulin decoding has been implemented using the “Polynomials with lower degree”
optimization; see Section 4.4.2 of [4] for additional details.

2.1.4 Difficult problems for cryptography

In this section, we describe difficult problems which can be used for cryptography and
discuss their hardness. All problems are variants of the decoding problem, which consists
of looking for the closest codeword to a given vector: when dealing with linear codes, it is
readily seen that the decoding problem stays the same when one is given the syndrome of
the received vector rather than the received vector. We therefore speak of (rank) Syndrome
Decoding (RSD).

Definition 2.1.13 (RSD Distribution). For positive integers, n, k, and w, the RSD(n, k, w)

Distribution chooses H
$← F(n−k)×n

qm and x
$← Fnqm such that ‖x‖ = w, and outputs

(H, σ(x) = Hx>).

Definition 2.1.14 (Computational RSD Problem). On input (H,y>) ∈ F(n−k)×n
qm ×

F(n−k)
qm from the RSD distribution, the Computational Rank Syndrome Decoding Problem

RSD(n, k, w) asks to find x ∈ Fnqm such that Hx> = y> and ‖x‖ = w.

The RSD problem has recently been proven difficult with a probabilistic reduction from
the Hamming setting in [12]. For cryptography we also need a decision version of the
problem, which is given in the following definition.

Definition 2.1.15 (Decisional RSD Problem). On input (H,y>) ∈ F(n−k)×n
qm × F(n−k)

qm ,
the Decisional RSD Problem DRSD(n, k, w) asks to decide with non-negligible advantage
whether (H,y>) came from the RSD(n, k, w) distribution or the uniform distribution over
F(n−k)×n
qm × F(n−k)

qm .

Finally, as our cryptosystem uses ideal codes, we explicitly define the problem for this
setting. The following definitions describe the DRSD problem in the ideal configuration,
and are just a combination of Definition 2.1.5 and 2.1.15. Ideal codes are very useful in
cryptography since their compact description allows to decrease considerably the size of the
keys.
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Definition 2.1.16 (s-IRSD Distribution). For positive integers n, w, and s, let P ∈ Fq[X]
be an irreducible polynomial of degree n, let S(n, s) be the set of the parity-check matrices H
under systematic form of s-ideal codes of type [sn, n] (see Equation 1). The s-IRSD(n,w)

Distribution chooses uniformly at random a matrix H
$← S(n, s) together with a vector

x = (x1, . . . ,xs)
$← Fsnqm such that ‖x‖ = w and outputs (H,Hx>).

Definition 2.1.17 (Computational s-IRSD Problem). For positive integers n, w, and s, let
P ∈ Fq[X] be an irreducible polynomial of degree n, let H be a random parity check matrix
under systematic form of an s-ideal code C and y

$← Fsn−nqm , the Computational s-ideal RSD
Problem s-IRSD(n,w) asks to find x = (x1, . . . ,xs) ∈ Fsnqm such that ‖x‖ = w and y = xH>.

Assumption 1. Although there is no general complexity result for ideal codes, decoding
these codes is considered as hard by the community. For the rank metric, there is no known
generic attack which exploits the ideal structure of the code. Thus, in practice, the best
attacks are the same as those for arbitrary codes.

The problem has a decisional form:

Definition 2.1.18 (Decisional s-IRSD Problem). For positive integers n, w, and s, let
P ∈ Fq[X] be an irreducible polynomial of degree n, let S(n, s) be the set of the parity-check
matrices H under systematic form of s-ideal codes of type [sn, n] (see Equation 1). The
Decisional s-Ideal RSD Problem s-DIRSD(n,w) asks to decide with non-negligible advantage
whether (H,y>) came from the s-IRSD(n,w) distribution or the uniform distribution over
S(n, s)× F(sn−n)

qm .

As for the ring-LPN problem, there is no known reduction from the search version of
s-IRSD problem to its decision version. The proof of [2] cannot be directly adapted in the
ideal case, however the best known attacks on the decision version of the problem s-IRSD
remain the direct attacks on the search version of the problem s-IRSD.

In what follows, we will need a version of the s-IRSD Problem in which the error has a
non-homogeneous (NH) weight. This means that some coordinates of the error will have a
support E1 whereas the others will have a different support E2. It is easy to give a general
definition of this new problem, nevertheless for the sake of clarity, we will just define the
specific one we need.

Definition 2.1.19 (NHIRSD Distribution). For positive integers n, w1, and w2, let
P ∈ Fq[X] be an irreducible polynomial of degree n, let S(n, 3) be the set of the parity-
check matrices H under systematic form of 3-ideal codes of type [3n, n] (see Equation 1).
The NHIRSD (n,w1, w2) Distribution chooses uniformly at random a matrix H

$← S(n, 3)

together with a vector x = (x1,x2,x3)
$← F3n

qm such that ‖(x1,x3)‖ = w1, ‖x2‖ = w1 + w2,
Supp(x1,x3) ⊂ Supp(x2), and outputs (H,Hx>).
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Definition 2.1.20 (Computational NHIRSD Problem). For positive integers n, w1, and
w2, let P ∈ Fq[X] be an irreducible polynomial of degree n, let H be a random parity check
matrix under systematic form of an 3-ideal code C and y

$← F2n
qm. The Computational non-

homogeneous 3-ideal RSD Problem NHIRSD (n,w1, w2) asks to find x = (x1,x2,x3)
$← F3n

qm

such that ‖(x1,x3)‖ = w1, ‖x2‖ = w1 + w2, Supp(x1,x3) ⊂ Supp(x2), and y = xH>.

Proposition 2.1.1. For positive integers n, w1, and w2, let P ∈ Fq[X] be an irreducible
polynomial of degree n. The Search 3-IRSD (n,w1) problem reduces to the Search NHIRSD
(n,w1, w2) problem.

Proof. The proof is straightforward, if one has an algorithm A(η, ω1, ω2) which can output
a solution to a NHIRSD instance of arbitrary parameters (η, ω1, ω2), then given a 3-IRSD
instance of parameters (n′, w′1), one solves it calling A with parameters (n′, w′1, 0) and
outputs its solution.

Definition 2.1.21 (Decisional NHIRSD Problem). For positive integers n, w1, and w2, let
P ∈ Fq[X] be an irreducible polynomial of degree n, let S(n, 3) be the set of the parity-check
matrices H under systematic form of 3-ideal codes of type [3n, n] (see Equation 1). The
Decisional non-homogeneous 3-ideal RSD Problem DNHIRSD (n,w1, w2) asks to decide with
non-negligible advantage whether (H,y>) came from the NHIRSD (n,w1, w2) distribution or
the uniform distribution over S(n, 3)× F2n

qm.

2.1.5 Encryption and security

Encryption Scheme. An encryption scheme is a tuple of four polynomial time algorithms
(Setup,KeyGen,Encrypt,Decrypt):

• Setup(1λ), where λ is the security parameter, generates the global parameters param
of the scheme;

• KeyGen(param) outputs a pair of keys, a (public) encryption key pk and a (private)
decryption key sk;

• Encrypt(pk,m, θ) outputs a ciphertext c, from the message m, under the encryption
key pk using randomness θ;

• Decrypt(sk, c) outputs the plaintext m, encrypted in the ciphertext c or ⊥.

Such an encryption scheme has to satisfy both Correctness and Indistinguishability under
Chosen Plaintext Attack (IND-CPA) security properties.

Correctness: For every λ, every param← Setup(1λ), every pair of keys (pk, sk) generated
by KeyGen, every message m, we should have

P [Decrypt(sk,Encrypt(pk,m, θ)) = m] = 1− negl(λ),
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where negl(·) is a negligible function and where the probability is taken over varying ran-
domness.

IND-CPA [13]: This notion, formalized by the game depicted in Fig. 1, states that an
adversary should not be able to efficiently guess which plaintext has been encrypted even
if he knows it is one among two plaintexts of his choice.

In the following, we denote by |A| the running time of an adversary A. The global
advantage for polynomial time adversaries running in time less than t is:

Advind
E (λ, t) = max

|A|≤t
Advind

E,A(λ), (3)

where Advind
E,A(λ) is the advantage the adversary A has in winning game Expind−b

E,A (λ):

Expind−b
E,A (λ)

1. param← Setup(1λ)
2. (pk, sk)← KeyGen(param)
3. (m0,m1)← A(FIND : pk)
4. c∗ ← Encrypt(pk,mb, θ)
5. b′ ← A(GUESS : c∗)
6. RETURN b′

Figure 1: Game for the IND-CPA security of an asymmetric encryption scheme.

Advind
E,A(λ) =

∣∣Pr[Expind−1
E,A (λ) = 1]− Pr[Expind−0

E,A (λ) = 1]
∣∣ . (4)

IND-CPA and IND-CCA2: Note that the standard security requirement for a public key
cryptosystem is IND-CCA2, indistinguishability against adaptive chosen-ciphertext attacks,
and not just IND-CPA. The main difference is that for IND-CCA2 indistinguishability must
hold even if the attacker is given a decryption oracle first when running the FIND algorithm
and also when running the GUESS algorithm (but cannot query the oracle on the challenge
ciphertext c∗). We do not present the associated formal game and definition as an existing
(and inexpensive) transformation can be used [15] for our scheme to pass from IND-CPA to
IND-CCA2.

In [15] Hofheinz et al. present a generic transformation that takes into account de-
cryption errors and can be applied directly to our scheme. Roughly, their construction
provides a way to convert a guarantee against passive adversaries into indistinguishability
against active ones by turning a public key cryptosystem into a KEM-DEM. The tightness
(the quality factor) of the reduction depends on the ciphertext distribution. Regarding
our scheme, random words only have a negligible (in the security parameter) probability of
being valid ciphertexts. In other words, the γ-spreadness factor of [15] is small enough so
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that there is no loss between the IND-CPA security of our public key cryptosystem and the
IND-CCA2 security of the KEM-DEM version.

The security reduction is tight in the random oracle model and does not require
any supplemental property from our scheme as we have the IND-CPA property. Let
us denote by Encrypt(pk,m, θ) an encryption function that relies on θ to generate ran-
dom values. The idea of [15] transformation is to de-randomize the encryption function
Encrypt(pk,m, θ) by using a hash function G and do a deterministic encryption of m by
calling c = Encrypt(pk,m,G(m)). The ciphertext is sent together with a hash K = H(c,m)
that ties the ciphertext to the plaintext. The receiver then decrypts c into m, checks the
hash value, and uses again the deterministic encryption to check that c is indeed the ci-
phertext associated to m.

As the reduction is tight, we do not need to change our parameters when we pass from
IND-CPA to IND-CCA2. From a computational point of view, the overhead for the sender
is two hash calls and for the receiver it is two hash calls and an encrypt call. From a
communication point of view the overhead is the bitsize of a hash (or two if the reduction
must hold in the Quantum Random Oracle Model, see [15] for more details).

2.2 Presentation of the scheme

In this section, we describe our proposal: RQC. We begin with the PKE version
(RQC.PKE), then describe the transformation of [15] to obtain a KEM-DEM that achieves
IND-CCA2 (RQC.KEM). Finally, we discuss an hybrid encryption scheme using NIST
standard conversion techniques (RQC.HE). Parameter sets can be found in Sec. 2.4.

Notation: Snw(Fqm) stands for the set of vectors of length n and rank weight w over
Fqm , Sn1,w(Fqm) stands for the set of vectors of length n and rank weight w, such that
their support contains 1, and S3n

(w1,w2)
(Fqm) stands for the set of vectors of length 3n with

non-homogeneous rank weight (w1, w2) over of Fqm , more precisely:

Snw(Fqm) = {x ∈ Fnqm : ‖x‖ = w}
Sn1,w(Fqm) = {x ∈ Fnqm : ‖x‖ = w, 1 ∈ Supp(x)}

S3n
(w1,w2)

(Fqm) = {x = (x1,x2,x3) ∈ F3n
qm : ‖(x1,x3)‖ = w1, ‖x2‖ = w1 + w2,

Supp(x1,x3) ⊂ Supp(x2)}

2.2.1 Public key encryption version (RQC.PKE)

Presentation of the scheme. RQC uses two types of codes: a Gabidulin code Gg(n, k,m)
generated by G ∈ Fk×nqm which can correct at least δ errors via an efficient algorithm
Gg.Decode(·); and a random ideal [2n, n]-code with parity-check matrix (1,h). The four
polynomial-time algorithms constituting our scheme are depicted in Fig. 2.
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• Setup(1λ): generates and outputs the global parameters param =
(n, k, δ, w, w1, w2, P ) where P ∈ Fq[X] is an irreducible polynomial of degree n.

• KeyGen(param): samples h
$← Fnqm , g

$← Snn (Fqm) and (x,y)
$← S2n

1,w(Fqm),
computes the generator matrix G ∈ Fk×nqm of Gg(n, k,m), sets pk =
(g,h, s = x + h · y mod P ) and sk = (x,y), returns (pk, sk).

• Encrypt(pk,m, θ): uses randomness θ to generate (r1, e, r2)
$← S3n

(w1,w2)
(Fqm), sets

u = r1 + h · r2 mod P and v = mG + s · r2 + e mod P , returns c = (u,v).

• Decrypt(sk, c): returns Gg.Decode(v − u · y mod P ).

Figure 2: Description of our proposal RQC.PKE.

Notice that the generator matrix G of the code Gg is publicly known, so the security of
the scheme and the ability to decrypt do not rely on the knowledge of the error correcting
code Gg being used.

Correctness. The correctness of our encryption scheme clearly relies on the decoding
capability of the code Gg. Specifically, assuming Gg.Decode correctly decodes v− u · y, we
have:

Decrypt (sk,Encrypt (pk,m, θ)) = m. (5)

And Gg.Decode correctly decodes v − u · y whenever

‖s · r2 − u · y + e‖ ≤ δ (6)
‖ (x + h · y) · r2 − (r1 + h · r2) · y + e‖ ≤ δ (7)
‖x · r2 − r1 · y + e‖ ≤ δ (8)

There is no decryption failure, or to be more accurate, the probability that a decryption
failure occurs is null. More details are provided at the beginning of Sec. 2.4.

2.2.2 KEM/DEM version (RQC.KEM)

Let E be an instance of the RQC.PKE cryptosystem as described above. Let G, H, and K
be hash functions. The KEM-DEM version of the RQC cryptosystem is described in Figure
3.

According to [15], the RQC.KEM is IND-CCA2. More details regarding the tightness of
the reduction are provided at the end of Sec. 2.4.

Security concerns and implementation details. Notice that while NIST only
recommends SHA512 as a hash function, the transformation of [15] would be danger-
ous – at least in our setting – if one sets G = H. Indeed, publishing the randomness
θ = G(m) = H(m) = d used to generate r1, r2, and e, would allow one to retrieve the
secret key of E . We therefore suggest to use SHA3-512 for G and SHA512 for H.
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• Setup(1λ): as before, except that the plaintext space has size k × m ≥ 256 as
required by NIST.

• KeyGen(param): exactly as before.

• Encapsulate(pk): generate m
$← Fkqm (this will serve as a seed to derive the shared

key). Derive the randomness θ ← G(m). Generate the ciphertext c ← (u,v) =
E .Encrypt(pk,m, θ), and derive the symmetric key K ← K(m, c). Let d← H(m),
and send (c,d).

• Decapsulate(sk, c,d): Decrypt m′ ← E .Decrypt(sk, c), compute θ′ ← G(m′), and
(re-)encrypt m′ to get c′ ← E .Encrypt(pk,m′, θ′). If c 6= c′ or d 6= H(m′) then
abort. Otherwise, derive the shared key K ← K(m, c).

Figure 3: Description of our proposal RQC.KEM.

2.2.3 A hybrid encryption scheme (RQC.HE)

NIST announced that they will be using generic transformations to convert any IND-CCA2
KEM into an IND-CCA2 PKE although no detail on these conversions have been provided.
We therefore refer to RQC.HE to designate the PKE scheme resulting from applying a
generic conversion to RQC.KEM.

2.3 Representation of objects

Field elements. Elements of Fqm are represented as vectors of size m over Fq. For RQC,
q is chosen equal to 2 (see section 2.4) thus e ∈ Fqm is represented as (e0, . . . , em−1) ∈ Fm2 .
In the reference implementation, elements are stored using 8× dm/64e bytes in which the
unused 64× dm/64e −m bits are zero-padded. In the optimized implementation, elements
are stored using 16×dm/128e bytes in which the unused 128×dm/128e−m are zero-padded.
The first bit e0 corresponds to the constant coefficient of the polynomial e.

Vectors. Elements of Fnqm are represented as n-dimensional arrays of Fqm elements.

Seeds. The considered seed-expander has been provided by the NIST. It is initialized
with a byte string of length 40 of which 32 are used as the seed and 8 are used as the
diversifier. In addition, it is initialized with max_length equal to 232 − 1.

2.3.1 Parsing vectors from/to byte strings

Vectors of Fnqm are converted to byte strings using a compact representation in which the
unused bits of each element are removed, thus leading to a dnm/8e long byte string. The
compact representation is used for the public key pk, the secret key sk, the ciphertext c and
for the inputs of the hash functions G,H and K.
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2.3.2 Keys and ciphertext representation

The secret key sk = (x,y) is represented as sk = (seed1) where seed1 is used to generate
x and y. The public key pk = (g,h, s) is represented as pk = (seed2, s) where seed2 is
used to generate g and h. The generator matrix G is generated from g with respect to
Definition 2.1.8. The ciphertext c is represented as (u,v,d) where d is generated using
SHA512. The secret key has size 40 bytes, the public key has size 40 + dnm/8e bytes, and
the ciphertext has size 2dnm/8e+ 64 bytes.

2.3.3 Randomness and vector generation

Random bytes are generated using the NIST provided randombytes or seedexpander func-
tions. The randombytes function is used to generate seed1 and seed2 as well as m. The
seedexpander function is used to generate θ (using m as seed) as well as x, y (using seed1
as seed), g, h (using seed2 as seed) and r1, r2, e (using θ as seed).

Random vectors are sampled uniformly from Fkqm , Fnqm , Snn (Fqm), S2n
1,w(Fqm) or

S3n
(w1,w2)

(Fqm). Sampling from Fkqm and Fnqm is performed by filling the mathematical repre-
sentation of the vector with random bits. Sampling from Snn (Fqm) uses the same process and
repeat it until a full rank vector is found. Sampling from S2n

1,w(Fqm) starts by generating a
full rank support vector of size w that contains 1. Next, the sampled vector is generated by
setting the coordinates of the support vector at random positions and setting the remain-
ing coordinates as random linear combinations of the support vector coordinates. Sampling
from S3n

(w1,w2)
(Fqm) uses a similar process with two full rank support vectors of size w1 and

w1 + w2 respectively. The support vector of size w1 + w2 is generated first and its w1 first
coordinates are used to create the support vector of size w1.

2.4 Parameters

2.4.1 Error distribution and decoding algorithm: no decryption failure

The decryption algorithm of RQC requires to decode an error e′ = x · r2 − r1 · y + e where
the words x and y (resp. r1 and r2) have rank weight w (resp. w1) and e has rank weight
w1 +w2. Unlike the Hamming metric weight, the rank weight of the vector x · r2− r1 · y is
almost always ww1 and is in any case bounded from above by ww1. In particular, with a
strong probability, the rank weight of x · r2 − r1 · y is the same as the rank weight of x · r2
since x and y share the same rank support, as do r1 and r2. We consider the additional
error e of rank w1 + w2. So that overall the error e′ to decode for decryption has a rank
weight upper bounded by (w + 1)w1 + w2.

Now since we choose the secret vector (x,y) such that its support is a random subspace
of Fqm of dimension w containing 1, the weight of e′ is upper bounded by ww1 +w2. Indeed,
in this case, a part of the support of e is included in the product of the supports of (x,y)
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and (r1, r2). This does not modify the security proof, and impacts only the value of w in
the choice of parameters.

For decoding, we consider Gabidulin [n, k] codes over Fqm , which can decode n−k
2

rank
errors and choose our parameters such that ww1 +w2 ≤ n−k

2
, so that there is no decryption

failure.

2.4.2 Parameters and tightness of the reduction

In what follows, unless otherwise mentioned, DIRSD will refer to the 2-DIRSD problem.
We also recall that the DNHIRSD problem always deals with ideal [3n, n]-code with non-
homogeneous supports for the error which has rank weight (w1, w2).

The practical security of the public key of our scheme relies on the DIRSD problem for
a small weight vector of weight w = ‖x‖ = ‖y‖ with w = O(

√
n).

The IND-CPA security of the scheme could be reduced to the DIRSD and the DNHIRSD
problems for decoding, respectively, a random ideal [2n, n]-code for a vector (r1, r2) with
small weight w1 and a random ideal [3n, n]-code for a vector (r1, e, r2) with small non-
homogeneous weight (w1, w2).

There are two kinds of attacks against those problems: the combinatorial ones and the
algebraic ones.

Combinatorial attacks. The current best known combinatorial attacks are given in
[11, 3] and their complexity is detailed in Section 6.

For a given block length n and a rank weight w1, the 3-DIRSD (n,w1) problem is easier
to solve than the 2-DIRSD (n,w1) problem and the 3-DIRSD (n,w1) problem reduces to the
DNHIRSD (n,w1, w2) problem (Proposition 2.1.1).

In practice, for our parameters, the combinatorial attacks are less efficient than the
algebraic attacks.

Algebraic attacks. The current best known algebraic attacks are described in [5, 6]
and their complexity are detailed in Section 6.

For algebraic attacks, the additional support of e of rank weight w2 in the
DNHIRSD(n,w1, w2) problem does have an impact on its complexity, this is discussed in
Section 6 using an adaptation of [6] to non-homogeneous error. In other words, the bigger
the rank weight w2, the harder to solve DNHIRSD (n,w1, w2), so this additional support
gives us a way to control the complexity of the algebraic attacks against it.

Thus, we chose the value of w1 and w2 such that the parameters fits the required security
complexities; essentially, for our parameters, the complexity of the algebraic attacks against
DNHIRSD (n,w1, w2) is greater than for 2-DIRSD (n,w1), except for the parameters of RQC-
III-256 for which the complexity of DNHIRSD (n,w1, w2) is a little below 2-DIRSD (n,w1),
but still greater than 256.

Quantum attacks. At the current state of research, there is no real quantum speed-up
for the aforementioned algebraic attacks on which our parameters are largely based.

The best quantum attacks on the rank metric problems follow [10], in that case there is
a square root gain on the probabilistic part of the attack (details are given in [10]).
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For instance, from a quantum point of view, RQC-I-192 has a security of 128 quantum-
bits.

2.4.3 Choice of parameters

Overall, the parameters proposed in Tab. 1 correspond to tight reduction for generic in-
stances of the DIRSD problem in the rank metric.

All of our submissions use ideal code over F2m in order to reduce the size of the key
and to allow to compute the syndrome of an error as sums and products of polynomials in
F2m [X]/〈P 〉, with P ∈ F2[X] of degree n. In order to avoid folding attacks (see [14]), P is
chosen irreducible. Moreover, to decrease the computational costs, we want P to be sparse.
We have obtained these polynomials with the Magma software. More details are available
at http://magma.maths.usyd.edu.au/magma/handbook/text/193#1685. Tab. 2 presents
the aforementioned polynomials as well as the polynomials used to define F2m .

The decoding Gabidulin code has length n, dimension k over Fqm and corrects errors of
weight up to (n − k)/2 > ww1 + w2. The resulting public key, secret key, ciphertext and
shared secret sizes are given in Tab. 3. The aforementioned sizes are the ones used in our
reference implementation except that we also concatenate the public key within the secret
key in order to respect the NIST API.

RQC Cryptosystem Parameters

Instance q m n k w w1 w2 Security

RQC-I 2 127 113 3 7 7 6 128
RQC-II 2 151 149 5 8 8 8 192
RQC-III 2 181 179 3 9 9 7 256

Table 1: Parameter sets for RQC. The security is expressed in bits.

Instance P Π

RQC-I X113 +X9 + 1 X127 +X + 1
RQC-II X149 +X10 +X9 +X7 + 1 X151 +X3 + 1
RQC-III X179 +X4 +X2 +X + 1 X181 +X7 +X6 +X + 1

Table 2: Polynomials considered for RQC. P is the polynomial used to define Fnqm as
Fqm [X]/〈P 〉 and Π is the polynomial used to define Fqm as Fq[X]/〈Π〉.
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Instance pk size sk size ct size ss size Security

RQC-I 1834 40 3652 64 128
RQC-II 2853 40 5690 64 192
RQC-III 4090 40 8164 64 256

Table 3: Sizes in bytes for RQC (see section 2.3). The security is expressed in bits.

3 Performance Analysis
This section provides performance measures of our implementations of RQC.KEM.

Benchmark platform. The benchmarks have been performed on a machine that has
16GB of memory and an Intel R© CoreTM i7-7820X CPU @ 3.6GHz for which the Hyper-
Threading, Turbo Boost and SpeedStep features were disabled. The scheme have been
compiled with gcc (version 9.2.0) and use the openssl (version 1.1.1d) library as a provider
for SHA2. For each parameter set, the results have been obtained by computing the mean
from 1000 random instances. In order to minimize biases from background tasks running
on the benchmark platform, each instances have been repeated 100 times and averaged.

Constant time. The provided implementations have been implemented in a constant time
way whenever relevant and as such their running time should not leak any information with
respect to sensible data. For instance, such sensible data include secret keys as well as the
weight of the error to be decoded by the Gabidulin code (see section 6.4).

3.1 Reference Implementation

The performances of our reference implementation on the aforementioned benchmark plat-
form are described in Tab. 4. The following optimization flags have been used during
compilation: -O3 -flto.

Instance KeyGen Encaps Decaps
RQC-128 0.87 1.62 10.42
RQC-192 1.89 3.63 22.26
RQC-256 2.86 5.27 36.39

Table 4: Millions of CPU cycles of RQC reference implementation.
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3.2 Optimized Implementation

An optimized implementation leveraging AVX and CLMUL instructions have been pro-
vided. Its performances on the aforementioned benchmark platform are described in Tab. 5.
The following optimization flags have been used during compilation: -O3 -flto -mavx2
-mpclmul -msse4.2 -maes.

Instance KeyGen Encaps Decaps
RQC-128 0.37 0.53 2.58
RQC-192 0.76 1.16 5.65
RQC-256 1.15 1.71 9.35

Table 5: Millions of CPU cycles of RQC reference implementation.

4 Known Answer Test Values
Known Answer Test (KAT) values have been generated using the script provided
by the NIST and can be retrieved in the KAT/Reference_Implementation/ and
KAT/Optimized_Implementation folders. In addition, examples with intermediate values
have also been provided in these folders.

Notice that one can generate the aforementioned test files using respectively the kat
and verbose modes of our implementation. The procedure to follow in order to do so is
detailed in the technical documentation.

5 Security
In this section we prove the security of our encryption scheme viewed as a PKE scheme
(IND-CPA). The security of the KEM/DEM version is provided by the transformation
described in [15], and the tightness of the reduction provided by this transformation has
been discussed at the end of Sec. 2.1.5.

Theorem 5.1. The scheme presented above is IND-CPA under the DIRSD and DNHIRSD
assumptions.

Proof. To prove the security of the scheme, we are going to build a sequence of games tran-
sitioning from an adversary receiving an encryption of messagem0 to an adversary receiving
an encryption of a message m1 and show that if the adversary manages to distinguish one
from the other, then one can build a simulator running in approximately the same time
that breaks the DIRSD assumption for 2-ideal codes or the DNHIRSD assumption for 3-ideal
codes.
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Game G1: This is the real game, which we can state algorithmically as follows:

Game1E,A(λ)
1. param← Setup(1λ)
2. (pk, sk)← KeyGen(param) with pk = (g,h, s = x + h · y) and sk = (x,y)
3. (m0,m1)← A(FIND : pk)
4. c∗ ← Encrypt(pk,m0, θ)
5. b′ ← A(GUESS : c∗)
6. RETURN b′

Game G2: In this game we start by forgetting the decryption key sk, and taking s at
random, and then proceed honestly:

Game2E,A(λ)
1. param← Setup(1λ)
2a. (pk, sk)← KeyGen(param) with pk = (g,h, s = x + h · y) and sk = (x,y)

2b. s $← Fnqm
2c. (pk, sk)← ((g,h, s),0)
3. (m0,m1)← A(FIND : pk)
4. c∗ ← Encrypt(pk,m0, θ)
5. b′ ← A(GUESS : c∗)
6. RETURN b′

The adversary has access to pk and c∗. As he has access to pk and the Encrypt
function, anything that is computed from pk and c∗ can also be computed from just
pk. Moreover, the distribution of c∗ is independent of the game we are in, and therefore
we can suppose the only input of the adversary is pk. Suppose he has an algorithm
Dλ, taking pk as input, that distinguishes with advantage ε Game G1 and Game G2,
for some security parameter λ. Then he can also build an algorithm D′E,Dλ which
solves the DIRSD (n,w) problem for parameters (n,w) resulting from Setup(1λ), with
the same advantage ε, when given as input a challenge (H,y>) ∈ Fn×2nqm × Fnqm .

D′E,Dλ((H,y>))
1. Set param← Setup(1λ)
2a. (pk, sk)← KeyGen(param) with pk = (g′,h′, s′ = x′ + h′ · y′) and sk = (x′,y′)
2b. (pk, sk)← ((g′,h,y),0)
3. b′ ← Dλ(pk)
4. If b′ == 1 output IRSD
5. If b′ == 2 output UNIFORM

Note that if we define pk as (g′,h,y) with g′ generated by KeyGen(param) and
(H,y>) from a IRSD (n,w) distribution pk follows exactly the same distribution as
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in Game G1. On the other hand if (H,y>) comes from a uniform distribution, then
pk follows exactly the same distribution as in Game G2. Thus we have:

Pr
[
D′E,Dλ((H,y>)) = IRSD|(H,y>)← 2-IRSD(n,w)

]
=

Pr
[
Dλ(pk) = 1|pk from Game1E,A(λ)

]
Pr
[
D′E,Dλ((H,y>)) = UNIFORM|(H,y>)← 2-IRSD(n,w)

]
=

Pr
[
Dλ(pk) = 2|pk from Game1E,A(λ)

]
And similarly when (H,y>) is uniform the probabilities of D′E,Dλ outputs match those
of Dλ when pk is from Game2E,A(λ). The advantage of D′E,Dλ is therefore equal to the
advantage of Dλ.

Game G3: Now that we no longer know the decryption key, we can start generating ran-
dom ciphertexts. So instead of picking correctly weighted r1, r2, e, the simulator now
picks random vectors in the full space.

Game3E,A(λ)
1. param← Setup(1λ)
2a. (pk, sk)← KeyGen(param) with pk = (g,h, s = x + h · y) and sk = (x,y)

2b. s $← Fnqm
2c. (pk, sk)← ((g,h, s),0)
3. (m0,m1)← A(FIND : pk)

4a. Use randomness θ to generate e
$← Fnqm , r = (r1, r2)

$← F2n
qm uniformly at random

4b. u← r1 + h · r2 and v←m0G + s · r2 + e
4c. c∗ ← (u,v)
5. b′ ← A(GUESS : c∗)
6. RETURN b′

As we have
(u,v −m0G)> =

(
In 0 IM(h)
0 In IM(s)

)
· (r1, e, r2)> ,

the difference between Game G2 and Game G3 is that in the former((
In 0 IM(h)
0 In IM(s)

)
, (u,v −m0G)>

)
follows the NHIRSD distribution (for a [3n, n] ideal code), and in the latter it follows a
uniform distribution (as r1 and e are uniformly distributed and independently chosen
One-Time Pads).
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Note that an adversary is not able to obtain c∗ from pk any more, as depending on
which game we are c∗ is generated differently. The input of a game distinguisher will
therefore be (pk, c∗). As it must interact with the challenger as usually we suppose it
has two access modes FIND and GUESS to process first pk and later c∗.

Suppose the adversary is able to distinguish Game G2 and Game G3, with a distin-
guisher Dλ, which takes as input (pk, c∗) and outputs a guess b′ ∈ {2, 3} of the game
we are in.

Again, we can build a distinguisher D′E,Dλ that will break the DNHIRSD (n,w1, w2)
assumption for parameters (n,w1, w2) from Setup(1λ) with the same advantage as the
game distinguisher, when given an input (H,y>) ∈ F2n×3n

qm × F2n
qm . In the DNHIRSD

(n,w1, w2) problem, matrix H is assumed to be of the form(
In 0 IM(a)
0 In IM(b)

)
.

In order to use explicitly a and b we note the matrix Ha,b instead of just H. We will
also note y = (y1,y2).

D′E,Dλ((Ha,b, (y1,y2)>))
1. param← Setup(1λ)
2a. (pk, sk)← KeyGen(param) with pk = (g,h, s = x + h · y) and sk = (x,y)
2b. (pk, sk)← ((g, a,b),0)
3. (m0,m1)← Dλ(FIND : pk)
4. u← y1, v←m0G + y2 and c∗ ← (u,v)
5. b′ ← Dλ(GUESS : c∗)
4. If b′ == 2 output IRSD
5. If b′ == 3 output UNIFORM

The distribution of pk is unchanged with respect to the games as g is generated by
KeyGen(param) and a and b are both uniformly chosen. If (Ha,b, (y1,y2)>) follows
the DNHIRSD (n,w1, w2) distribution, then

(y1,y2)> =

(
In 0 IM(a)
0 In IM(b)

)
· (x1,x2,x3)>

with ‖(x1,x3)‖ = w1, ‖x2‖ = w1 + w2, and Supp((x1,x3)) ⊂ Supp(x2). Thus, c∗
follows the same distribution as in Game G2. If (Ha,b, (y1,y2)>) follows an uniform
distribution, then c∗ follows the same distribution as in GameG3. We obtain therefore
the same equalities for the output probabilities of D′E,Dλ and Dλ as with the previous
games and therefore the advantages of both distinguishers are equal.

Game G4: We now encrypt the other plaintext. We chose r′1, r
′
2, e
′ uniformly at random

and set u = r′1 + h · r′2 and v = m1G + s · r′2 + e′. This is the last game we describe
explicitly, since, even if it is a mirror of Game G3, it involves a new proof.
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Game4E,A(λ)
1. param← Setup(1λ)
2a. (pk, sk)← KeyGen(param) with pk = (g,h, s = x + h · y) and sk = (x,y)

2b. s $← Fnqm
2c. (pk, sk)← ((g,h, s),0)
3. (m0,m1)← A(FIND : pk)

4a. Use randomness θ to generate e′
$← Fnqm and r′ = (r′1, r

′
2)

$← F2n
qm

4b. u← r′1 + h · r′2 and v←m1G + s · r′2 + e′

4c. c∗ ← (u,v)
5. b′ ← A(GUESS : c∗)
6. RETURN b′

The outputs from Game G3 and Game G4 follow the exact same distribution, and
therefore the two games are indistinguishable from an information-theoretic point of
view. Indeed, for each tuple (r, e) of Game G3, resulting in a given (u,v), there is
a one to one mapping to a couple (r′, e′) resulting in Game G4 in the same (u,v),
namely r′ = r and e′ = e+m0G−m1G. This implies that choosing uniformly (r, e)
in Game G3 and choosing uniformly (r′, e′) in Game G4 leads to the same output
distribution for (u,v).

Game G5: In this game, we now pick r′1, r
′
2, e
′ with the correct weight.

Game G6: We now conclude by switching the public key to an honestly generated one.

We do not explicit these last two games as Game G4 and Game G5 are the equivalents
of Game G3 and Game G2 except that m1 is used instead of m0. A distinguisher
between these two games breaks therefore the DNHIRSD assumption too. Similarly
Game G5 and Game G6 are the equivalents of Game G2 and Game G1 and a distin-
guisher between these two games breaks the DIRSD assumption.

We managed to build a sequence of games allowing a simulator to transform a ciphertext
of a message m0 to a ciphertext of a message m1. Hence, the advantage of an adversary
against the IND-CPA experiment is bounded as:

Advind
E,A(λ) ≤ 2

(
AdvDIRSD(λ) + AdvDNHIRSD(λ)

)
. (9)

6 Known Attacks
In this section, we present the best known attacks against the DIRSD (Definition 2.1.18)
and DNHIRSD (Definition 2.1.21) problems on which RQC is based.
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Although these problems are decisional problems, the best attacks in the current state
of research rely on solving their computational version. There exist two types of attacks on
these problems:

• combinatorial attacks where the goal is to find the support of the error or of the
codeword ;

• algebraic attacks where the opponent tries to solve an algebraic system, for instance
using Gröbner basis computation.

First, we will deal with combinatorial attacks, and then we will discuss algebraic attacks.
In addition to this, we will also provide some details regarding timing attacks against RQC.

These attacks are generic attacks against the RSD and NHRSD problems since there is
no known improvement which exploits the ideal structure of the codes.

6.1 Combinatorial attacks

The best combinatorial attack to solve the RSD problem (Definition 2.1.14) for an [sn, n]-
code over Fqm with an error of rank weight r has a complexity of:

O
(

((s− 1)nm)ωqrd
m(n+1)
sn e−m

)
operations in Fq, where ω is the exponent of the complexity to find the solution of a linear
system.

This attack is an improvement of a previous attack described in [11], a detailed de-
scription of the attack can be found in [3]. The general idea of the attack is to adapt the
Information Set Decoding attack for the Hamming distance. For the rank metric, the at-
tacker tries and guesses a subspace which contains the support of the error and then solves
a linear system obtained from the parity-check equations to check if the choice was correct.

Remark 6.1. Since the linear system is not random, it is reasonable to take ω = 2 for the
choice of the parameters of RQC, even if the attack described in [3] takes ω = 3. Let us
remark that the choice of our parameter is flexible. We could take ω = 0 and increase the
parameters, this would correspond to only keeping the exponential complexity of the attack.

6.2 Algebraic attacks

This section, except the very last part (underdetermined case for the NHRSD problem), is
taken from [6] with some minors modifications.

6.2.1 Algebraic attack against RSD

The second way to solve an RSD instance is to write it as a system of equations, called a
modeling, then, if one solves this system, that is to say finds one solution, it is a solution
to the RSD instance.
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Ourivski and Johansson pioneered the algebraic attack against RSD by giving a modeling
in [20], then Levy and Perret first proposed to solve it using Gröbner basis computations
in [16]. In [5], a new modeling was proposed, it is based on maximal minors taken from a
slightly different version of Ourivksi and Johansson’s modeling.

From now on, in this section, we deal with RSD instances based on [n, k]-code over F2m

with target rank weight r.
The modeling uses the fact that the vector e of small weight r can be written as a

product SC where S is a matrix containing a basis of the support of e and C is a matrix
containing the coordinates of each component of e in this basis. Those matrices are called
the support and the coordinate matrices.

Roughly, the system will consist in m
(
n−k−1

r

)
equations in

(
n
r

)
variables which are max-

imal minors, in [5], this system was then solved by computing its Gröbner basis; in [6],
a different modeling enables one to solve it directly by linearization. More precisely, the
condition

m

(
n− k − 1

r

)
≥
(
n

r

)
(10)

is inherent to this system; when it is fulfilled, it corresponds to the overdetermined case, if
it is not, it corresponds to the underdetermined case.

Overdetermined case. If the condition (10) is fulfilled, solving the RSD problem is
equivalent to solving a linear system with m

(
n−k−1

r

)
equations in

(
n
r

)
variables, which can

be done with a cost in

O

(
m

(
n− k − 1

r

)(
n

r

)ω−1)
. (11)

On the one hand, if the condition (10) is widely fulfilled, there is an optimization in [6] to
reduce the complexity of (11) using a punctured version of the code. On the other hand, if
(10) is not fulfilled, one can reduce to it by guessing few variables at an exponential cost,
it is an hybrid attack, also in [6].

Underdetermined case. For cryptographic purpose, the parameters are chosen so that
they belong to an area where the condition (10) is obviously not fulfilled and where the
exponential cost of the hybrid attack would make it impractical, this particular area is
called the underdetermined case. The best known complexity in this case is also described
in [6]: it uses a variation of the aforementioned system together with a new setting coming
from the reduction between RSD and the MinRank problem. This new system, despite being
bigger, is sometimes sparser, so its resolution could take advantage of Wiedemann algorithm
to solve sparse linear systems.

More precisely, the complexity in the underdetermined case is

O
(
(Bb + Cb)A

ω−1
b

)
(12)
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where

Ab :=
b∑

j=1

(
n

r

)(
mk + 1

j

)

Bb :=
b∑

j=1

(
m

(
n− k − 1

r

)(
mk + 1

j

))

Cb :=
b∑

j=1

j∑
i=1

(
(−1)i+1

(
n

r + i

)(
m+ i− 1

i

)(
mk + 1

j − i

))
.

and where b is the smallest positive integer so that the condition Ab−1 ≤ Bc+Cb is fulfilled.
When b ≥ 2, one uses Wiedemann algorithm, resulting in a new complexity of

O

Bb

(
k+r+1
r

)
+ Cb(mk + 1)(r + 1)

Bb + Cb

(
b∑

j=1

(
n

r

)(
mk + 1

j

))2
 . (13)

6.2.2 Algebraic attack against NHRSD

As a reminder, for a code of length n over F2m with an error vector of rank weight r,
one writes the error as a product SC where S is a vector of length r with entries in F2m

consisting in a basis of the support of the error and C is a r × n matrix with entries in F2

consisting in the coordinates of each component of the error in this basis.
From now on, in this section, we deal with [3n, n]-code over F2m , so n is the size of a

block and the dimension of the code, and no longer its length.
To visualize the particular structure of the non-homogeneous error, one wants to write

it using block matrices. Thus, the error vector (r1, e, r2) is written as a product of the two
following matrices

S̃ =
[
S1 S2

]
∈ Fw1+w2

2m and C̃ =

[
C1 C2 C3

0 C′2 0

]
∈ F(w1+w2)×(3n)

2 .

The matrix S1 is a basis of Supp((r1, r2)) and S̃ is a basis of Supp(e), recall that
Supp((r1, r2)) ⊂ Supp(e).

The aforementioned attack relied on the condition (10) in which the right part of the
inequality counts the number of distinct maximal minors in C̃. With this approach, the
condition does not take advantage of the structure of C̃. In fact, as it contains two zero
blocks, its number of maximal minors equal to zero is

M :=

w2−1∑
i=0

(
2n

w1 + w2 − i

)(
n

i

)
.
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So one gets a new condition:

m

(
2n− 1

w1 + w2

)
≥
(

3n

w1 + w2

)
−M − 1. (14)

As for the attack against RSD, this condition yields to two different cases: the overdeter-
mined and underdetermined cases.

Overdetermined case. This new condition (14) yields to a new complexity in the case
where it is fulfilled and to a new hybrid approach if it is not.

When the condition (14) it is fulfilled, the new complexity is

O

(
m

(
2n− 1

w1 + w2

)((
3n

w1 + w2

)
−M

)ω−1)
.

If it is not, one wants to guess a columns of C̃ to perform an hybrid approach as mentioned
above. One notices that once again the structure of C̃ can be used by the attacker, in
fact the cost of the exponential part of the hybrid attack is reduced if one guesses columns
for which the lower block is a zero block. Doing so, the exponential term will drop from
qa(w1+w2) down to qaw2 . To sum everything up, the cost of the new attack (both in the
overdetermined case, i.e. when a = 0, and the hybrid case) is

O

qaw1m

(
2n− 1

w1 + w2

)
(

3n− a
w1 + w2

)
−

w2−1∑
i=0

(
2n− a

w1 + w2 − i

)(
n

i

)
︸ ︷︷ ︸

:= Ma


ω−1

where a is the smallest integer such that the following condition is fulfilled

m

(
2n− 1

w1 + w2

)
≥
(

3n− a
w1 + w2

)
−Ma − 1. (15)

Underdetermined case. If the condition (14) is not fulfilled and if the aforementioned
hybrid approach is impractical, one can adapt the attack in the underdetermined case
described in Section 6.2.1 to the case of non-homogeneous error.

The core of the attack still relies on writing the non-homogeneous error as a product of
block matrices to be able to count the number of maximal minors of C̃ which are equal to
zero, recall that this number is

M :=

w2−1∑
i=0

(
2n

w1 + w2 − i

)(
n

i

)
.
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The fact thatM maximal minors will be equal to zero will not affect the number of equations
which remains Bb + Cb where

Bb :=
b∑

j=1

(
m

(
2n− 1

w1 + w2

)(
mn+ 1

j

))

Cb :=
b∑

j=1

j∑
i=1

(
(−1)i+1

(
3n

w1 + w2 + i

)(
m+ i− 1

i

)(
mn+ 1

j − i

))
,

but it will change the number of variables which drops down to

Ab :=
b∑

j=1

((
3n

w1 + w2

)
−M

)(
mn+ 1

j

)
.

Thus, like in Section 6.2.1, one can solve this linear system with a complexity of

O

(
min

(
(Bb + Cb)A

ω−1
b ,

Bb

(
n+w1+w2+1

w1+w2

)
+ Cb(mn+ 1)(w1 + w2 + 1)

Bb + Cb
A2
b

))
where b is the smallest positive integer such that Ab − 1 ≤ Bb + Cb. The right part in the
minimum corresponds to the use of Wiedemann algorithm, which is more interesting when
the system is sparse enough.

6.3 Quantum speed-up

At the current state of research, there is no important quantum speed-up for the aforemen-
tioned algebraic attacks.

For combinatorial attacks, the quantum speed-up is easy to analyze. According to [10], a
slight generalization of Grover’s quantum search algorithm allows to divide by a factor 2 the
exponential complexity of the attacks. Thus, the complexity of the quantum combinatorial
attack against the RSD problem is

O
(

((s− 1)nm)ωq
1
2
(rdm(n+1)

sn e−m)
)
.

6.4 Timing attacks

The resistance of RQC to timing attacks have been studied in [7]. This paper describes
timing attacks that rely on a correlation between the weight of the error to be decoded and
the running time of Gabidulin code’s decoding algorithm. These attacks are of theoretical
interest, nevertheless they are quite impractical in real situations as they require a huge
number of requests to a timing oracle. The provided reference and optimized implementa-
tions are implemented in a way that should not leak the weight of the error to be decoded
thus preventing the aforementioned timing attacks.
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7 Advantages and Limitations

7.1 Advantages

The main advantages of RQC over existing code-based cryptosystems are:

• its IND-CPA reduction to a well-understood problem on coding theory: the Syndrome
Decoding problem;

• its immunity against attacks aiming at recovering the hidden structure of the code
being used;

• it features a null decryption failure rate;

• it features more attractive parameters than most of the Hamming based proposals.

The null decryption failure rate allows to achieve a tight reduction for the IND-CCA2
security of the KEM-DEM version through the recent transformation of [15].

7.2 Limitations

Rank metric has very nice features, but the use of rank metric for cryptographic purposes
is not very old (1991). It may seem to be a limitation, but still in recent years there have
been a lot of activities on understanding the inherent computational difficulty of the related
problems. The combinatorial attacks are very well understood, and the recent results of
[5, 6] permit to have a clear view on the complexity of algebraic attacks.
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