
Rank Quasi-Cyclic (RQC)

RQC is an IND-CCA2 KEM running for standardization to NIST’s competition in the
category “post-quantum public key encryption scheme”. Different sets of parameters are
proposed for security strength categories 1, 3, and 5.

Principal Submitters (by alphabetical order):
• Carlos Aguilar Melchor
• Nicolas Aragon
• Slim Bettaieb
• Loïc Bidoux

• Olivier Blazy
• Jean-Christophe Deneuville
• Philippe Gaborit
• Gilles Zémor

Inventors: Same as submitters

Developers: Same as submitters

Owners: Same as submitters

Main contact
x Philippe Gaborit
@ philippe.gaborit@unilim.fr
H +33-626-907-245
= University of Limoges
B 123 avenue Albert Thomas

87 060 Limoges Cedex
France

Backup point of contact
x Jean-Christophe Deneuville
@ jch.deneuville@gmail.com
H +33-631-142-705
= INSA Centre Val de Loire
B 4 rue Jean le Bail

87 000 Limoges
France

Signatures
Digital copies of the signed statements are provided in Appendix A. The original

paper versions will be given to Dustin Moody directly at the First PQC Standardization
Conference.

mailto:philippe.gaborit@unilim.fr
mailto:jch.deneuville@gmail.com

Contents
1 Specifications 3

1.1 Preliminaries . 3
1.1.1 General definitions . 3
1.1.2 Gabidulin codes and their decoding 7
1.1.3 Difficult problems for cryptography 9
1.1.4 Encryption and security . 11

1.2 Presentation of the scheme . 12
1.2.1 Public key encryption version (RQC.PKE) 13
1.2.2 KEM/DEM version (RQC.KEM) . 13
1.2.3 A hybrid encryption scheme (RQC.HE) 14

1.3 Parameters . 14

2 Performance Analysis 16
2.1 Reference Implementation . 17
2.2 Optimized Implementation . 18

3 Known Answer Test Values 18

4 Security 18

5 Known Attacks 22
5.1 Generic attacks . 23
5.2 Algebraic attacks . 23

6 Advantages and Limitations 23
6.1 Advantages . 23
6.2 Limitations . 24

References 24

A Signed statements by the submitters 26

2

1 Specifications
In this section, we introduce RQC, an efficient encryption scheme based on coding theory.

RQC stands for Rank Quasi-Cyclic. This proposal is currently under revision for publication
in IEEE Transactions on Information Theory. Many notations, definitions and properties
are very similar to [6]. We nevertheless include them in this proposal for completeness.

RQC is a code-based public key cryptosystem with several desirable properties:

• It is proved IND-CPA assuming the hardness of (a decisional version of) the Syndrome
Decoding on structured codes. By construction, RQC perfectly fits the recent KEM-
DEM transformation of [17], and allows to get an hybrid encryption scheme with
strong security guarantees (IND-CCA2) and good efficiency,

• In contrast with most code-based cryptosystems, the assumption that the family of
codes being used is indistinguishable among random codes is no longer required, and

• It features more attractive parameters than most of the Hamming based proposals.

Organization of the Specifications. This section is organized as follows: we provide
the required background in Sec. 1.1, we make some recalls on encryption and security in
Sec. 1.1.4 then present our proposal in Sec. 1.2. Concrete sets of parameters are provided
in Sec. 1.3.

1.1 Preliminaries

1.1.1 General definitions

Throughout this document, Z denotes the ring of integers and for m, q ∈ Z, q prime, Fqm
denotes an extension of degree m of the finite field of q elements. Additionally, we denote
by ω(·) the rank weight of a vector (see Def. 1.1.10), and by Snw (Fqm) the set of words in
Fnqm of weight w. Formally:

Snw (Fqm) =
{
v ∈ Fnqm , such that ω(v) = w

}
.

Let V denotes a vector space of dimension n over some finite field F for some positive
n ∈ Z. Elements of V can be interchangeably considered as row vectors or polynomials in
R = F[X]/(Xn − 1). Vectors/Polynomials (resp. matrices) will be represented by lower-
case (resp. upper-case) bold letters. A prime integer n is said primitive if the polynomial
(Xn − 1)/(X − 1) is irreducible in R.

For u,v ∈ V , we define their product similarly as in R, i.e. uv = w ∈ V with

wk =
∑

i+j≡k mod n

xiyj, for k ∈ {0, 1, . . . , n− 1}. (1)

Our new protocol takes great advantage of the cyclic structure of matrices. In the same
fashion as [1], rot(h) for h ∈ V denotes the circulant matrix whose ith column is the vector
corresponding to hX i. This is captured by the following definition.

3

Definition 1.1.1 (Circulant Matrix). Let v = (v1, . . . , vn) ∈ Fnq . The circulant matrix
induced by v is defined and denoted as follows:

rot(v) =

v0 vn−1 . . . v1
v1 v0 . . . v2
...

...
vn−1 vn−2 . . . v0

 ∈ Fq
n×n (2)

As a consequence, it is easy to see that the product of any two elements u,v ∈ R can
be expressed as a usual vector-matrix (or matrix-vector) product using the rot(·) operator
as

u · v = u× rot(v)> =
(
rot(u)× v>

)>
= v × rot(u)> = v · u. (3)

Coding Theory. We now recall some basic definitions and properties about coding
theory that will be useful to our construction. We mainly focus on general definitions, and
refer the reader to Sec. 1.2 for the description of the scheme, and also to [18] for a complete
survey on code-based cryptography.

Definition 1.1.2 (Linear Code). A Linear Code C of length n and dimension k (denoted
[n, k]) is a subspace of R of dimension k. Elements of C are referred to as codewords.

Definition 1.1.3 (Fqm-linear code). An Fqm-linear code C of length n and dimension k is
a linear subspace of Fnqm of dimension k. We denote it C[n, k]qm or simply C[n, k] if the
context is clear.

Definition 1.1.4 (Generator Matrix). We say that G ∈ Fk×n is a Generator Matrix for
the [n, k] code C if

C =
{
mG, for m ∈ Fk

}
. (4)

Definition 1.1.5 (Parity-Check Matrix). Given an [n, k] code C, we say that H ∈ F(n−k)×n

is a Parity-Check Matrix for C if H is a generator matrix of the dual code C⊥, or more
formally, if

C⊥ =
{
v ∈ Fn such that Hv> = 0

}
, (5)

where Hv> is the syndrome of v.

Definition 1.1.6 (Minimum Distance). Let C be an [n, k] linear code over R and let ω be
a norm on R (the rank weight for us, see Def. 1.1.10). The Minimum Distance of C is

d = min
u,v∈C,u6=v

ω(u− v). (6)

A code with minimum distance d is capable of decoding arbitrary patterns of up to
δ = bd−1

2
c errors. Code parameters are denoted [n, k, d].

Code-based cryptography usually suffers from huge keys. In order to keep our cryp-
tosystem efficient, we will use the strategy of Gaborit [9] for shortening keys. This results
in Quasi-Cyclic Codes, as defined below.

4

Definition 1.1.7 (Quasi-Cyclic Codes [22]). View a vector c = (c1, . . . , cs) of Fsn2 as s
successive blocks (n-tuples). An [sn, k, d] linear code C is Quasi-Cyclic (QC) of index s if,
for any c = (c1, . . . , cs) ∈ C, the vector obtained after applying a simultaneous circular shift
to every block c1, . . . , cs is also a codeword.

More formally, by considering each block ci as a polynomial in R = F[X]/(Xn− 1), the
code C is QC of index s if for any c = (c1, . . . , cs) ∈ C it holds that (X · c1, . . . , X · cs) ∈ C.

Definition 1.1.8 (Systematic Quasi-Cyclic Codes). A systematic Quasi-Cyclic [sn, n] code
of index s and rate 1/s is a quasi-cyclic code with an (s− 1)n× sn parity-check matrix of
the form:

H =

In 0 · · · 0 A1

0 In A2

.
0 · · · In As−1

 (7)

where A1, . . . ,As−1 are circulant n× n matrices.

Remark 1.1. The definition of systematic quasi-cyclic codes of index s can of course be
generalized to all rates `/s, ` = 1 . . . s − 1, but we shall only use systematic QC-codes of
rates 1/2 and 1/3 and wish to lighten notation with the above definition. In the sequel,
referring to a systematic QC-code will imply by default that it is of rate 1/s. Note that
arbitrary QC-codes are not necessarily equivalent to a systematic QC-code.

The definitions usually associated to Hamming metric codes such as norm (Hamming
weight), support (non-zero coordinates), and isometries (n× n permutation matrices) can
be adapted to the rank metric setting based on the representation of elements as matrices
in Fm×nq .

We recall some definitions and properties of rank metric codes, and refer the reader
to [20] for more details. Consider the case where F is an extension of a finite field, i.e.
F = Fqm , and let x = (x1, . . . , xn) ∈ Fnqm be an element of some vector space of dimension
n over Fqm . A basic property of field extensions is that they can be seen as vector spaces
over the base field they extend. Hence, by considering Fqm as a vector space of dimension
m over Fq, and given a basis (e1, . . . , em) ∈ Fmq , one can express each xi as

xi =
m∑
j=1

xj,iej (or equivalently xi = (x1,i, . . . , xm,i)). (8)

Using such an expression, we can expand x ∈ Fnqm to a matrix E(x) such that:

x =
(
x1 x2 . . . xn

)
∈ Fnqm (9)

E(x) =

x1,1 x1,2 . . . x1,n
x2,1 x2,2 . . . x2,n
...

...
xm,1 xm,2 . . . xm,n

 ∈ Fm×nq . (10)

5

For an element x of Fnqm we define its rank norm ω(x) as the rank of the matrix E(x). A
rank metric code C of length n and dimension k over the field Fqm is a subspace of dimension
k of Fnqm embedded with the rank norm. In the following, C is a rank metric code of length
n and dimension k over Fqm , where q = pη for some prime p and positive η ≥ 1. The matrix
G denotes a k × n generator matrix of C.

The minimum rank distance of the code C is the minimum rank of non-zero vectors of
the code. We also considers the usual inner product which allows to define the notion of
dual code.

Let x = (x1, x2, · · · , xn) ∈ Fnqm be a vector of rank r. We denote by E = 〈x1, . . . , xn〉 the
Fq-subspace of Fqm generated by the coordinates of x i.e. E = Vect (x1, . . . , xn). The vector
space E is called the support of x and denoted Supp(x). Finally, the notion of isometry
which in Hamming metric corresponds to the action of the code on n × n permutation
matrices, is replaced for the rank metric by the action of n× n invertible matrices over the
base field Fq.

Definition 1.1.9. Let x ∈ Fnqm. The support of x denoted Supp(x), is the Fq-linear space
of Fqm spanned by the coordinates of x. Formally,

Supp(x) = Vect (E (x)) = 〈x1, . . . , xn〉Fq

The number of supports of dimension w is the number of linear subspaces of Fqm of

dimension w:
[
m
w

]
q

=
∏w−1

i=0
qm−qi
qw−qi = Θ

(
qw(m−w)

)
.

Definition 1.1.10 (Rank weight). The rank weight of a vector x ∈ Fnqm is given by the rank
of its matrix E(x) as defined in Eq. (10). Therefore, ω(x) = rank(E(x)) = dim (Supp(x)).

Bounds for rank metric codes. The classical bounds for Hamming metric have
straightforward rank metric analogues.
Singleton Bound. The classical Singleton bound for linear [n, k] codes of minimum rank
r over Fqm applies naturally in the rank metric setting. It works in the same way as for
linear codes (by finding an information set) and reads r ≤ 1 + n − k. When n > m this
bound can be rewritten [20] as

r ≤ 1 +

⌊
(n− k)m

n

⌋
. (11)

Codes achieving this bound are called Maximum Rank Distance codes (MRD).

Deterministic Decoding. Unlike the situation for the Hamming metric, there do not
exist many families of codes for the rank metric which are able to decode rank errors
efficiently up to a given norm. When we are dealing with deterministic decoding, there is
essentially only one known family of rank codes which can decode efficiently: the family of
Gabidulin codes [7]. More details about these codes are provided in the next subsection.

6

In a nutshell, they are defined over Fqm and for k ≤ n ≤ m, Gabidulin codes of length n
and dimension k are optimal and satisfy the Singleton bound for m = n with minimum
distance d = n− k + 1. They can decode up to bn−k

2
c rank errors in a deterministic way.

Probabilistic Decoding. There also exists a simple family of codes which has been
described for the subspace metric in [27] and can be straightforwardly adapted to the rank
metric. These codes reach asymptotically the equivalent of the Gilbert-Varshamov bound
for the rank metric, however their non-zero probability of decoding failure makes them less
interesting for the cases we consider in this paper.

1.1.2 Gabidulin codes and their decoding

Gabidulin codes were introduced in 1985 [7]. These codes are analogs to Reed-Solomon
codes in Hamming metric [25], but involves q-polynomials instead of regular ones, and
have therefore a strong algebraic structure. q-polynomials were introduced by Ore [23], we
hereafter give some background.

Definition 1.1.11 (q-polynomials). The set of q-polynomials over Fqm is the set of poly-
nomials with the following shape:{

P (X) =
∑
i∈N

piX
qi , with (pi) ∈ FN

qm of finite support

}

The q-degree of a q-polynomial P , denoted degq(P), is the biggest integer r such that pr 6= 0.

Definition 1.1.12 (Gabidulin codes). Let k, n,m ∈ N such that k 6 n 6 m. Let g =
(g1, . . . , gn) be a Fq-linearly family of vectors of Fqm. The Gabidulin code Gg(n, k,m) is the
following code [n, k]qm:{

P (g), degq P < k
}

where P (g) denotes the evaluation of the coordinates of g by P.

A generator matrix for Gg is given by:

G =

g1 . . . gn
gq1 . . . gqn
...

gq
k−1

1 . . . gq
k−1

n

These codes can efficiently decode up to

⌊
n−k
2

⌋
errors [7]. They can therefore be used in

combination of the McEliece cryptosystem. But the resulting scheme [8] has been attacked
due to the strong algebraic structure [24].

7

Decoding Gabidulin codes. The algorithm employed in order to decode Gabidulin
codes has been proposed in [21] and later improved in [4]. Let Gg denote a Gabidulin code
over Fqm of length n and dimension k generated by the vector g ∈ Fnqm . The decoding
problem is stated as follows.

Definition 1.1.13 (Decoding(y,Gg, t) [21]). Find, if it exists, c ∈ Gg and e with ω(e) ≤ t
such that y = c + e.

The decoding problem is solved using q-polynomial reconstruction. The reconstruction
problem is defined as:

Definition 1.1.14 (Reconstruction(y,g, k, t) [21]). Find a tuple (V, f) where V is a
non-zero q-polynomial with degq(V) ≤ t and f is a q-polynomial with degq(f) < k such
that:

V (yi) = V ◦ f(gi) with 1 ≤ i ≤ n

When t is less than the code’s decoding capacity b(n − k)/2c, the solution of
Reconstruction(y,g, k, t) is unique. Moreover, from a solution of the q-polynomial re-
construction problem, one can get a solution to the decoding problem.

Theorem 1.2 ([21]). If (V, f) is a solution of Reconstruction(y,g, k, t), then (c =
f(g), e = y − c) is a solution of Decoding(y,Gg, t).

We now consider the linearized variant of the q-polynomial reconstruction problem.

Definition 1.1.15 (Reconstruction2(y,g, k, t) [21]). Find a tuple (V,N) where V is a
non-zero q-polynomial with degq(V) ≤ t and N is a q-polynomial with degq(N) ≤ k + t− 1
such that:

V (yi) = N(gi) with 1 ≤ i ≤ n

When t is less than the code’s decoding capacity b(n− k)/2c, the two reconstruction prob-
lems are equivalent.

Theorem 1.3 ([21]). If (V, f) is a solution of Reconstruction(y,g, k, t), then (V, V ◦ f)
is a solution of Reconstruction2(y,g, k, t).

If t ≤ b(n − k)/2c and if (V,N) is a solution of Reconstruction2(y,g, k, t), then
(V, f) with f defined as the left euclidean division of N by V in the ring of q-polynomials
is a solution of Reconstruction(y,g, k, t).

In order to solve the Reconstruction2(y,g, k, t) problem, one constructs by recurrence
two pairs of q-polynomials (N0, V0) and (N1, V1) satisfying the interpolation conditions of
the problem V (yi) = N(gi), 1 ≤ i ≤ n at each step i and such that at least one of the pairs
satisfies the final degree conditions degq(V) ≤ t and degq(N) ≤ k + t − 1. The complete
description of this algorithm can be found in [4], section 4, algorithm 5.

In a nutshell, the decoding algorithm for Gabidulin codes works as follows:

8

Definition 1.1.16 (Algorithm for Decoding(y,Gg, t) [21, 4]).

1. Find a solution (V,N) of Reconstruction2(y,g, k, t)

2. Find f by computing the left euclidean division of N by V

3. Retrieve the codeword c by evaluating f in g

Theorem 1.4 ([4]). The complexity of solving Decoding(y,Gg, t) by using the algorithm
described in definition 1.1.16 is O(n2) operations in Fqm. More precisely, the number of
different operations is upper-bounded by:

• 2n2 − 2n+ (k − 1)(n−k
2

) additions in Fqm ;

• 2n2 − k + (k − 1)(n−k
2

) multiplications in Fqm ;

• n2 + 0.5k2 − 2n+ 1.5k2 + (n− k)(k − 1) exponentiations by q in Fqm ;

• 2n divisions in Fqm.

1.1.3 Difficult problems for cryptography

In this section we describe difficult problems which can be used for cryptography and discuss
their complexity.

All problems are variants of the decoding problem, which consists of looking for the
closest codeword to a given vector: when dealing with linear codes, it is readily seen that
the decoding problem stays the same when one is given the syndrome of the received vector
rather than the received vector. We therefore speak of (rank) Syndrome Decoding (RSD).

Definition 1.1.17 (RSD Distribution). For positive integers, n, k, and w, the RSD(n, k, w)

Distribution chooses H
$← F(n−k)×n

qm and x
$← Fnqm such that ω(x) = w, and outputs

(H, σ(x) = Hx>).

Definition 1.1.18 (Search RSD Problem). On input (H,y>) ∈ F(n−k)×n
qm ×F(n−k)

qm from the
RSD distribution, the Rank Syndrome Decoding Problem RSD(n, k, w) asks to find x ∈ Fnqm
such that Hx> = y> and ω(x) = w.

The RSD problem has recently been proven difficult with a probabilistic reduction to the
Hamming setting in [13]. For cryptography we also need a decision version of the problem,
which is given in the following definition.

Definition 1.1.19 (Decision RSD Problem). On input (H,y>)
$← F(n−k)×n

qm × F(n−k)
qm , the

Decision RSD Problem DRSD(n, k, w) asks to decide with non-negligible advantage whether
(H,y>) came from the RSD(n, k, w) distribution or the uniform distribution over F(n−k)×n

qm ×
F(n−k)
qm .

9

Finally, as our cryptosystem will use QC-codes, we explicitly define the problem on
which our cryptosystem will rely. The following definitions describe the DRSD problem in
the QC configuration, and are just a combination of Def. 1.1.7 and 1.1.19. Quasi-Cyclic
codes are very useful in cryptography since their compact description allows to decrease
considerably the size of the keys. In particular the case s = 2 corresponds to double
circulant codes with generator matrices of the form (In | A) for A a circulant matrix. Such
double circulant codes have been used for almost 10 years in cryptography (cf [10]) and
more recently in [22]. Quasi-cyclic codes of index 3 are also considered in [22].

Definition 1.1.20 (s-RQCSD Distribution). For positive integers n, w and s, the s-
RQCSD(n,w) Distribution chooses uniformly at random a parity matrix H

$← F(sn−n)×sn
qm

of a systematic QC code C of index s and rate 1/s (see Def. 1.1.8) together with a vector
x = (x1, . . . ,xs)

$← Fsnqm such that ω(xi) = w, i = 1..s, and outputs (H,Hx>).

Definition 1.1.21 ((Search) s-RQCSD Problem). For positive integers n, w, s, a random
parity check matrix H of a systematic QC code C of index s and y

$← Fsn−nqm , the Search
s-Quasi-Cyclic RSD Problem s-RQCSD(n,w) asks to find x = (x1, . . . ,xs) ∈ Fsnqm such that
ω(xi) = w, i = 1..s, and y = xH>.

It would be somewhat more natural to choose the parity-check matrix H to be made up
of independent uniformly random circulant submatrices, rather than with the special form
required by (7). We choose this distribution so as to make the security reduction to follow
less technical. It is readily seen that, for fixed s, when choosing quasi-cyclic codes with this
more general distribution, one obtains with non-negligible probability, a quasi-cyclic code
that admits a parity-check matrix of the form (7). Therefore requiring quasi-cyclic codes to
be systematic does not hurt the generality of the decoding problem for quasi-cyclic codes.

Assumption 1. Although there is no general complexity result for quasi-cyclic codes, de-
coding these codes is considered hard by the community. There exist general attacks which
uses the cyclic structure of the code [26] but these attacks have only a very limited impact on
the practical complexity of the problem. The conclusion is that in practice, the best attacks
are the same as those for non-circulant codes up to a small factor.

The problem has a decisional form:

Definition 1.1.22 (Decision s-RQCSD Problem). For positive integers n, w, s, a random
parity check matrix H of a systematic QC code C and y

$← Fsnqm, the Decision s-Quasi-Cyclic
RSD Problem s-DRQCSD(n,w) asks to decide with non-negligible advantage whether (H,y>)

came from the s-RQCSD(n,w) distribution or the uniform distribution over F(sn−n)×sn
qm ×

F(sn−n)
qm .

As for the ring-LPN problem, there is no known reduction from the search version of
s-RQCSD problem to its decision version. The proof of [2] cannot be directly adapted in the
quasi-cyclic case, however the best known attacks on the decision version of the problem
s-RQCSD remain the direct attacks on the search version of the problem s-RQCSD.

10

1.1.4 Encryption and security

Encryption Scheme. An encryption scheme is a tuple of four polynomial time algorithms
(Setup,KeyGen,Encrypt,Decrypt):

• Setup(1λ), where λ is the security parameter, generates the global parameters param
of the scheme;

• KeyGen(param) outputs a pair of keys, a (public) encryption key pk and a (private)
decryption key sk;

• Encrypt(pk,m) outputs a ciphertext c, on the message m, under the encryption key
pk;

• Decrypt(sk, c) outputs the plaintext m, encrypted in the ciphertext c or ⊥.

Such an encryption scheme has to satisfy both Correctness and Indistinguishability under
Chosen Plaintext Attack (IND-CPA) security properties.

Correctness: For every λ, every param← Setup(1λ), every pair of keys (pk, sk) generated
by KeyGen, every message m, we should have P [Decrypt(sk,Encrypt(pk,m, θ)) = m] =
1 − negl(λ) for negl(·) a negligible function, where the probability is taken over varying
randomness.

IND-CPA [15]: This notion formalized by the game depicted in Fig. 1, states that an
adversary should not be able to efficiently guess which plaintext has been encrypted even
if he knows it is one among two plaintexts of his choice.

In the following, we denote by |A| the running time of an adversary A. The global
advantage for polynomial time adversaries running in time less than t is:

Advind
E (λ, t) = max

|A|≤t
Advind

E,A(λ), (12)

where Advind
E,A(λ) is the advantage the adversary A has in winning game Expind−b

E,A (λ):

Expind−b
E,A (λ)

1. param← Setup(1λ)
2. (pk, sk)← KeyGen(param)
3. (m0,m1)← A(FIND : pk)
4. c∗ ← Encrypt(pk,mb, θ)
5. b′ ← A(GUESS : c∗)
6. RETURN b′

Figure 1: Game for the IND-CPA security of an asymmetric encryption scheme.

11

Advind
E,A(λ) =

∣∣Pr[Expind−1
E,A (λ) = 1]− Pr[Expind−0

E,A (λ) = 1]
∣∣ . (13)

IND-CPA and IND-CCA2: Note that the standard security requirement for a public key
cryptosystem is IND-CCA2, indistinguishability against adaptive chosen-ciphertext attacks,
and not just IND-CPA. The main difference is that for IND-CCA2 indistinguishability must
hold even if the attacker is given a decryption oracle first when running the FIND algorithm
and also when running the GUESS algorithm (but cannot query the oracle on the challenge
ciphertext c∗). We do not present the associated formal game and definition as an existing
(and inexpensive) transformation can be used [17] for our scheme to pass from IND-CPA
to IND-CCA2.

In [17] Hofheinz et al. present a generic transformation that takes into account de-
cryption errors and can be applied directly to our scheme. Roughly, their construction
provides a way to convert a guarantee against passive adversaries into indistinguishability
against active ones by turning a public key cryptosystem into a KEM-DEM. The tightness
(the quality factor) of the reduction depends on the ciphertext distribution. Regarding
our scheme, random words only have a negligible (in the security parameter) probability of
being valid ciphertexts. In other words, the γ-spreadness factor of [17] is small enough so
that there is no loss between the IND-CPA security of our public key cryptosystem and the
IND-CCA2 security of the KEM-DEM version.

The security reduction is tight in the random oracle model and does not require any
supplemental property from our scheme as we have the IND-CPA property (instead of just
a weaker property called One-Wayness). Let us denote by Encrypt(pk,m, θ) the encryption
function defined in Fig. 3 that uses randomness θ to generate uniformly random values
r1, r2, and e. The idea of [17] transformation is to de-randomize the encryption function
Encrypt(pk,m, θ) by using a hash function G and do a deterministic encryption of m by
calling c = Encrypt(pk,m,G(m)). The ciphertext is sent together with a hash K = H(c,m)
that ties the ciphertext to the plaintext. The receiver then decrypts c into m, checks
the hash value, and uses again the deterministic encryption to check that c is indeed the
ciphertext associated to m.

As the reduction is tight we do not need to change our parameters when we pass from
IND-CPA to IND-CCA2. From a computational point of view, the overhead for the sender
is two hash calls and for the receiver it is two hash calls and an encrypt call. From a
communication point of view the overhead is the bitsize of a hash (or two if the reduction
must hold in the Quantum Random Oracle Model, see [17] for more details).

1.2 Presentation of the scheme

In this section, we describe our proposal: RQC. We begin with the PKE version (RQC.PKE),
then describe the transformation of [17] to obtain a KEM-DEM that achieves IND-CCA2
(RQC.KEM). Finally, we discuss an hybrid encryption scheme using NIST standard conver-
sion techniques (RQC.HE). Parameter sets can be found in Sec. 1.3.

12

1.2.1 Public key encryption version (RQC.PKE)

Presentation of the scheme. RQC uses two types of codes: a decodable [n, k] code C,
generated by G ∈ Fk×n and which can correct at least δ errors via an efficient algorithm
C.Decode(·) (e.g. a Gabidulin code); and a random double-circulant [2n, n] code, of parity-
check matrix (1,h). The four polynomial-time algorithms constituting our scheme are
depicted in Fig. 3.

• Setup(1λ): generates and outputs the global parameters param= (n, k, δ, w, wr, we).

• KeyGen(param): samples h
$← R, the generator matrix G ∈ Fk×nqm of C, sk =

(x,y)
$← R2 such that ω(x) = ω(y) = w, sets pk = (h, s = x + h · y), and returns

(pk, sk).

• Encrypt(pk,m): generates e
$← R, r = (r1, r2)

$← R2 such that ω(e) = we and
ω(r1) = ω(r2) = wr, sets u = r1+h·r2 and v = mG+s · r2+e, returns c = (u,v).

• Decrypt(sk, c): returns C.Decode(v − u · y).

Figure 2: Description of our proposal RQC.PKE.

Notice that the generator matrix G of the code C is publicly known, so the security of
the scheme and the ability to decrypt do not rely on the knowledge of the error correcting
code C being used.

Correctness. The correctness of our new encryption scheme clearly relies on the decoding
capability of the code C. Specifically, assuming C.Decode correctly decodes v − u · y, we
have:

Decrypt (sk,Encrypt (pk,m)) = m. (14)

And C.Decode correctly decodes v − u · y whenever

ω (s · r2 − u · y + e) ≤ δ (15)
ω ((x + h · y) · r2 − (r1 + h · r2) · y + e) ≤ δ (16)
ω (x · r2 − r1 · y + e) ≤ δ (17)

In contrast to HQC, there is no decryption failure, or to be more accurate, the probability
that a decryption failure occurs is null. More details are provided at the beginning of
Sec. 1.3.

1.2.2 KEM/DEM version (RQC.KEM)

Let E be an instance of the RQC cryptosystem as described above. Let G, H, and K be
hash functions, typically SHA512 as advised by NIST1. The KEM-DEM version of the RQC

1See Dustin Moody’s mail entitled “new FAQ question” on PQC-forum (20/07/2017 – 12:58)

13

cryptosystem is defined as follows:

• Setup(1λ): as before, except that the plaintext space has size k × m ≥ 256 as
required by NIST.

• KeyGen(param): exactly as before.

• Encapsulate(pk): generate m
$← Fkqm (this will serve as a seed to derive the shared

key). Derive the randomness θ ← G(m). Generate the ciphertext c ← (u,v) =
E .Encrypt(pk,m, θ), and derive the symmetric key K ← K(m, c). Let d← H(m),
and send (c,d).

• Decapsulate(sk, c,d): Decrypt m′ ← E .Decrypt(sk, c), compute θ′ ← G(m′), and
(re-)encrypt m′ to get c′ ← E .Encrypt(pk,m′, θ′). If c 6= c′ or d 6= H(m′) then
abort. Otherwise, derive the shared key K ← K(m, c).

Figure 3: Description of our proposal RQC.KEM.

According to [17], the KEM-DEM version of RQC is IND-CCA2. More details regarding
the tightness of the reduction are provided at the end of Sec. 1.3.

Security concerns and implementation details. Notice that while NIST only rec-
ommends SHA512 as a hash function (or TupleHash256 for hardware efficiency purposes),
the transformation of [17] would be dangerous – at least in our setting – if one sets G = H.
Indeed, publishing the randomness θ = G(m) = H(m) = d used to generate r1, r2, and e,
would allow one to retrieve s, the secret key of E .

We therefore suggest to use a pseudo-random function for G, such as an AES-based seed
expander, and SHA512 for H.

1.2.3 A hybrid encryption scheme (RQC.HE)

While NIST claimed that they will be using generic transformations to convert any IND-
CCA2 KEM into an IND-CCA2 PKE, no detail on these conversions have been provided.
We therefore refer to RQC.HE to designate the PKE scheme resulting from applying a
generic conversion to RQC.KEM.

1.3 Parameters

Error distribution and decoding algorithm: no decryption failure. The case of
the rank metric is much simpler than for the Hamming metric. Indeed in that case the
decryption algorithm of our cryptosystem asks to decode an error e′ = x · r2 − r1 · y + e
where the words x and y (resp. r1 and r2)) have rank weight w (resp. wr). Unlike the
Hamming metric weight, the rank weight of the vector x · r2 − r1 · y is almost always wwr

and is in any case bounded from above by wwr. In particular, with a strong probability,

14

the rank weight of x · r2− r1 ·y is the same as the rank weight of x · r2 since x and y share
the same rank support, as do r1 and r2. We consider the additional error e of rank we = wr

with same error support as r1 and r2. So that overall the error e′ to decode for decryption
has a rank weight upper bounded by (w + 1)wr.

Now it is possible to optimize a little bit the weight of e′ by considering that the support
of the secret vector (x,y) is a random subspace of Fqm of dimension w containing 1, indeed
in that case the weight of e′ is upper bounded by wwr since the support of e is included in
the product of the supports of (x,y) and (r1, r2). This does not modify the security proof,
and impacts only the value of w in the choice of parameters.

For decoding, we consider Gabidulin [n, k] codes over Fqn , which can decode n−k
2

rank
errors and choose our parameters such that wwr ≤ n−k

2
, so that, unlike the Hamming metric

case, there is no decryption failure.

Parameters and tightness of the reduction. The practical security of the scheme
relies on the 2-DRQCSD problem for the public key, for a small weight vector of weight
w = ω(x) = ω(y) with w = O(

√
n). The IND-CPA security of the scheme could be

reduced to the 3-DRQCSD problem, decoding a random quasi-cyclic [3n, n] code for a small
weight vector (r1, e, r2). In the proof, the error vectors r1 and r2 share the same error
support E of dimension wr, for the encryption part the error support of e can also be
taken as E, so that the problem is tightly reduced to the 3-DRQCSD problem for rank
metric with weight wr, since all three vectors r1, r2 and e have the same error support E
of dimension wr. In that case the attacker wants to decode a [3n, n] rank metric code, the
best known attack is described in [12, 3]. Since on one hand the attacker wants to attack
a length 2n code and on the other hand to attack a length 3n code, which is easier, we
consider different weights for the secret key x,y of weight w and for the random chosen
values for the encryption r1, e, r2 of weight wr = we, typically we chose w ≈ 2

3
wr. For the

secret key, we consider 1 ∈ Support(x,y), now since finding a small weight codeword of
weight w with support containing 1 is harder than finding a small weight vector of weight
w − 1, we consider w − 1 for the security reduction to the 2-DRQCSD problem, and the
weight wr = we is chosen according to the 3-DRQCSD problem and the best known attacks
of [12, 3], whose complexity is given in section II-D. The best quantum attacks on the rank
metric problems follow [11], in that case there is square root gain on the probabilistic part
of the attack (details are given in [11]).

Remark 1.5. The system is based on cyclic codes, which means considering polynomials
modulo xn−1, interestingly enough, and only in the case of the rank metric, the construction
remains valid when considering not only polynomials modulo xn − 1 but also modulo a
polynomial with coefficient in the base field Fq. Indeed in that case the modulo does not
change the rank weight of a codeword. Such a variation on the scheme may be interesting to
avoid potential structural attacks which may use the factorization of the quotient polynomial
for the considered polynomial ring.

Choice of parameters: overall the parameters proposed in Tab. 1 correspond to tight
reduction for generic instances of the 2-DRQCSD and 3-DRQCSD problems in the rank

15

metric. Parameters are chosen such that 1 ∈ Supp(x,y), the vectors r1, r2 and e have the
same random support of dimension wr = we. The value of n is chosen so that Xn − 1
has up to 3 factors of high degree (except X − 1) in Fq[X] (typically n is chosen primitive
modulo q). The decoding Gabidulin code has length n, dimension k over Fqm and corrects
errors of weight up to (n−k)/2 = wwr. The resulting public key, secret key, ciphertext and
shared secret sizes are given in Tab. 2. One may use seeds to shorten keys thus obtaining
sizes presented in Tab. 3. The aforementioned sizes are the ones used in our reference
implementation except that we also concatenate the public key within the secret key in
order to respect the NIST API.

RQC Cryptosystem Parameters

Instance q m n k w wr = we Security

RQC-I 2 89 67 7 5 6 128
RQC-II 2 113 97 13 6 7 192
RQC-III 2 139 101 5 6 8 256

Table 1: Parameter sets for RQC. The security is expressed in bits.

Instance pk size sk size ct size ss size Security

RQC-I 1491 1491 1555 64 128
RQC-II 2741 2741 2805 64 192
RQC-III 3510 3510 3574 64 256

Table 2: Resulting theoretical sizes in bytes for RQC. The public key pk is composed of
(h, s) and has size 2nm. The secret key sk is composed of (x, y) and has size 2nm. The
ciphertext ct is composed of (u, v, d) and has size 2nm + 64. The shared secret ss is
composed of K and has size 64 (SHA512 output size). The security is expressed in bits.

Computational Cost. The encryption cost corresponds to a matrix-vector product
over Fqm , for a multiplication cost of elements of Fqm in m log(m) log(log(m)), we obtain
an encryption complexity in O (n2m log (m) log (log (m))). The decryption cost is also a
matrix-vector multiplication plus the decoding cost of the Gabidulin codes, both have the
complexities in O (n2m log (m) log (log (m))).

2 Performance Analysis
In this section, we provide concrete performance measures of our implementation. For each
parameter set, results have been obtained by running 100,000 random instances and com-

16

Instance pk size sk size ct size ss size Security

RQC-I 786 40 1556 64 128
RQC-II 1411 40 2806 64 192
RQC-III 1795 40 3574 64 256

Table 3: Resulting sizes in bytes for RQC using NIST seed expander initialized with 40
bytes long seeds. The public key pk is composed of (seed1, s) and has size 40 + nm. The
secret key sk is composed of (seed2) and has size 40. The ciphertext ct is composed of
(u, v, d) and has size 2nm + 64. The shared secret ss is composed of K and has size 64
(SHA512 output size). The security is expressed in bits.

puting their average execution time. The benchmarks have been performed on a machine
running Ubuntu 16.04 LTS. The latter has 32GB of memory and an Intel R© CoreTM i7-
4770 CPU @ 3.4GHz for which the Hyper-Threading, Turbo Boost and SpeedStep features
were disabled. The scheme have been compiled with gcc (version 7.2.0) using the compi-
lation flags -O3 -std=c99 -pedantic. The following third party libraries have been used:
openssl (version 1.1.0f), gmp (version 6.1.2) and mpfq (version 1.1) [14].

2.1 Reference Implementation

The performances of our reference implementation on the aforementioned benchmark plat-
form are described in Tab. 4 (timings in ms) and Tab. 5 (millions of CPU cycles required).

Instance KeyGen Encrypt Decrypt
RQC-I 0.23 0.58 1.56
RQC-II 0.52 1.65 4.25
RQC-III 0.83 1.90 5.29

Table 4: Timings (in ms) of the reference implementation for different instances of RQC.

Instance KeyGen Encrypt Decrypt
RQC-I 0.79 1.97 5.30
RQC-II 1.76 5.60 14.46
RQC-III 2.82 6.46 18.00

Table 5: Millions of cycles of the reference implementation for different instances of RQC.

17

2.2 Optimized Implementation

No optimized implementation has been provided. As a consequence, the folders
Optimized_Implementation/ and Reference_Implementation/ are identical. Additional
implementation (optimized variant using vectorization, constant-time implementation...)
might be provided later.

3 Known Answer Test Values
Known Answer Test (KAT) values have been generated using the script provided by
the NIST. They are available in the folder KAT/Reference_Implementation/. As men-
tioned in Sec. 2.2, since the reference and optimized implementations are identical,
KAT/Optimized_Implementation/ is just a copy of KAT/Reference_Implementation/.

In addition, we provide, for each parameter set, an example with intermediate values in
the folder KAT/Reference_Implementation/.

Notice that one can generate the aforementioned test files using respectively the kat
and verbose modes of our implementation. The procedure to follow in order to do so is
detailed in the technical documentation.

4 Security
In this section we prove the security of our encryption scheme viewed as a PKE scheme
(IND-CPA). The security of the KEM/DEM version is provided by the transformation
described in [17], and the tightness of the reduction provided by this transformation has
been discussed at the end of Sec. 1.1.4.

Theorem 4.1. The scheme presented above is IND-CPA under the 2-DRQCSD and 3-
DRQCSD assumptions.

Proof. To prove the security of the scheme, we are going to build a sequence of games
transitioning from an adversary receiving an encryption of message m0 to an adversary
receiving an encryption of a message m1 and show that if the adversary manages to distin-
guish one from the other, then we can build a simulator breaking the DRQCSD assumption,
for QC codes of index 2 or 3 (codes with parameters [2n, n] or [3n, n]), and running in
approximately the same time.

Game G1: This is the real game, which we can state algorithmically as follows:

Game1E,A(λ)
1. param← Setup(1λ)
2. (pk, sk)← KeyGen(param) with pk =

(
h,s = sk · h>

)
3. (m0,m1)← A(FIND : pk)

18

4. c∗ ← Encrypt(pk,m0, θ)
5. b′ ← A(GUESS : c∗)
6. RETURN b′

Game G2: In this game we start by forgetting the decryption key sk, and taking s at
random, and then proceed honestly:

Game2E,A(λ)
1. param← Setup(1λ)
2a. (pk, sk)← KeyGen(param) with pk =

(
h,s = sk · h>

)
2b. s $← R
2c. (pk, sk)← ((h,s),0)
3. (m0,m1)← A(FIND : pk)
4. c∗ ← Encrypt(pk,m0, θ)
5. b′ ← A(GUESS : c∗)
6. RETURN b′

The adversary has access to pk and c∗. As he has access to pk and the Encrypt
function, anything that is computed from pk and c∗ can also be computed from just
pk. Moreover, the distribution of c∗ is independent of the game we are in, and therefore
we can suppose the only input of the adversary is pk. Suppose he has an algorithm
Dλ, taking pk as input, that distinguishes with advantage ε Game G1 and Game G2,
for some security parameter λ. Then he can also build an algorithm D′E,Dλ which
solves the 2-DRQCSD(n, ω) problem for parameters (n, ω) resulting from Setup(λ),
with the same advantage ε, when given as input a challenge (H,y>) ∈ Fn×2nqm × Fnqm .

D′E,Dλ((H,y>))
1. Set param← Setup(λ) and get G from KeyGen(param)
2. pk← (h,y)
2. b′ ← Dλ(pk)
4. If b′ == 0 output RQCSD
5. If b′ == 1 output UNIFORM

Note that if we define pk as (h,y) with G generated by KeyGen(n, k, δ, ω) and (H,y>)
from a 2-RQCSD(n, ω) distribution pk follows exactly the same distribution as in
Game G1. On the other hand if (H,y>) comes from a uniform distribution, pk
follows exactly the same distribution as in Game G2. Thus we have

Pr
[
D′E,Dλ((h,y>)) = RQCSD|(h,y>)← 2-RQCSD(n, ω)

]
= Pr

[
Dλ(pk) = 0|pk from Game0E,A(λ)

]
and

Pr
[
D′E,Dλ((h,y>)) = UNIFORM|(h,y>)← 2-RQCSD(n, ω)

]
= Pr

[
Dλ(pk) = 1|pk from Game0E,A(λ)

]
19

And similarly when (h,y>) is uniform the probabilities of D′E,Dλ outputs match those
of Dλ when pk is from Game1E,A(λ). The advantage of D′E,Dλ is therefore equal to the
advantage of Dλ.

Game G3: Now that we no longer know the decryption key, we can start generating ran-
dom ciphertexts. So instead of picking correctly weighted r1, r2, e, the simulator now
picks random vectors in the full space.

Game3E,A(λ)
1. param← Setup(1λ)
2a. (pk, sk)← KeyGen(param) with pk =

(
h,s = sk · h>

)
2b. s $← R
2c. (pk, sk)← ((h,s),0)
3. (m0,m1)← A(FIND : pk)

4a. Use randomness θ to generate e
$← R, r = (r1, r2)

$← R2 uniformly at random
4b. u> ← Hr> and v←m0G + s · r2 + e
4c. c∗ ← (u,v)
5. b′ ← A(GUESS : c∗)
6. RETURN b′

As we have
(u,v −m0G)> =

(
In 0 rot(h)
0 In rot(s)

)
· (r1, e, r2)> ,

the difference between Game G2 and Game G3 is that in the former((
In 0 rot(h)
0 In rot(s)

)
, (u,v −m0G)>

)
follows the 3-RQCSD distribution (for a 2n × 3n QC matrix of index 3), and in the
latter it follows a uniform distribution (as r1 and e are uniformly distributed and
independently chosen One-Time Pads).

Note that an adversary is not able to obtain c∗ from pk any more, as depending on
which game we are c∗ is generated differently. The input of a game distinguisher will
therefore be (pk, c∗). As it must interact with the challenger as usually we suppose it
has two access modes FIND and GUESS to process first pk and later c∗.

Suppose the adversary is able to distinguish Game G2 and Game G3, with a distin-
guisher Dλ, which takes as input (pk, c∗) and outputs a guess b′ ∈ {1, 2} of the game
we are in.

Again, we can build a distinguisher D′E,Dλ that will break the 3-DRQCSD(n, ω) as-
sumption for parameters (n, ω) from Setup(1λ) with the same advantage as the game

20

distinguisher, when given an input (H, y>) ∈ F2n×3n
qm × F2n

qm . In the 3-DRQCSD(n, ω)
problem, matrix H is assumed to be of the form(

In 0 rot(a)
0 In rot(b)

)
.

In order to use explicitly a and b we note the matrix Ha,b instead of just H. We will
also note y = (y1,y2).

D′E,Dλ((Ha,b, (y1,y2)>))
1. param← Setup(1λ)
2a. (pk, sk)← KeyGen(param) with pk =

(
G,Q,s = sk · h>

)
2b. (pk, sk)← ((G, (In rot(a)),b),0)
3. (m0,m1)← Dλ(FIND : pk)
4. u← y1, v←m0G + y2 and c∗ ← (u,v)
5. b′ ← Dλ(GUESS : c∗)
4. If b′ == 1 output RQCSD
5. If b′ == 2 output UNIFORM

The distribution of pk is unchanged with respect to the games as the first matrix
is from KeyGen, the second matrix follows the same distribution as in KeyGen, and
the vectors b and s are both uniformly chosen. If (Ha,b, (y1,y2)>) follows the 3-
DRQCSD(n, ω) distribution, then

(y1,y2)> =

(
In 0 rot(a)
0 In rot(b)

)
· (x1,x2,x3)>

with ω(x1) = ω(x2) = ω(x3) = ω. Thus, c∗ follows the same distribution as in
Game G2. If (Ha,b, (y1,y2)>) follows an uniform distribution, then c∗ follows the
same distribution as in Game G3. We obtain therefore the same equalities for the
output probabilities of D′E,Dλ and Dλ as with the previous games and therefore the
advantages of both distinguishers are equal.

Game G4: We now encrypt the other plaintext. We chose r′1, r
′
2, e
′ uniformly and set

u> = hr′> and v = m1G + s · r′2 + e′. This is the last game we describe explicitly,
since, even if it is a mirror of Game G3, it involves a new proof.

Game4E,A(λ)
1. param← Setup(1λ)
2a. (pk, sk)← KeyGen(param) with pk =

(
G,Q,s = sk · h>

)
2b. s $← R
2c. (pk, sk)← ((G,Q,s),0)
3. (m0,m1)← A(FIND : pk)

4a. Use randomness θ to generate e′
$← R, r = (r′1, r

′
2)

$← R2 uniformly at random

21

4b. u> ← Qr′> and v←m1G + s · r′2 + e′

4c. c∗ ← (u,v)
5. b′ ← A(GUESS : c∗)
6. RETURN b′

The outputs from Game G3 and Game G4 follow the exact same distribution, and
therefore the two games are indistinguishable from an information-theoretic point of
view. Indeed, for each tuple (r, e) of Game G3, resulting in a given (u,v), there is
a one to one mapping to a couple (r′, e′) resulting in Game G4 in the same (u,v),
namely r′ = r and e′ −m0G + m1G. This implies that choosing uniformly (r, e)
in Game G3 and choosing uniformly (r′, e′) in Game G4 leads to the same output
distribution for (u,v).

Game G5: In this game, we now pick r′1, r
′
2, e
′ with the correct weight.

Game G6: We now conclude by switching the public key to an honestly generated one.

We do not explicit these last two games as Game G4 and Game G5 are the equivalents
of Game G3 and Game G2 except that m1 is used instead of m0. A distinguisher
between these two games breaks therefore the 3-DRQCSD assumption too. Similarly
Game G5 and Game G6 are the equivalents of Game G2 and Game G1 and a distin-
guisher between these two games breaks the 2-DRQCSD assumption.

We managed to build a sequence of games allowing a simulator to transform a ciphertext
of a message m0 to a ciphertext of a message m1. Hence, the advantage of an adversary
against the IND-CPA experiment is bounded as:

Advind
E,A(λ) ≤ 2

(
Adv2-DRQCSD(λ) + Adv3-DRQCSD(λ)

)
. (18)

5 Known Attacks
There exist two types of generic attacks on these problems:

• the combinatorial attacks where the goal is to find the support of the error or of the
codeword.

• the algebraic attacks where the opponent tries to solve an algebraic system by Groeb-
ner basis.

First, we deal with the combinatorial attacks then we discuss the algebraic attacks.

22

5.1 Generic attacks

For C a [n, k] rank code over Fqm , the best combinatorial attacks to decode a word with an
error of weight r is:

O
(
(nm)3qrd

m(k+1)
n e−m)

This attack is an improvement of a previous attack described in [12], a detailed de-
scription of the attack can be found in [3]. The general idea of the attack is to adapt the
Information Set Decoding attack for Hamming distance to rank metric. For rank metric the
attacker tries to guess a subspace which contains the support of the error and test whether
the choice of the subspace contains the support of the error or not, by solving a system of
syndrome equations. There is no known attack which uses the quasi-cyclicity of a code to
improve upon this attack, whenever the polynomial XN − 1 mod q has no small factors
except X − 1 [16].

5.2 Algebraic attacks

The second way to solve the equations of the system defined by the RSD problem is to use
Groebner basis [19]. The advantage of these attacks is that they are independent of the
size of q. They mainly depend on the number of unknowns with respect to the number of
equations. However, in the case q = 2 the number of unknowns is generally too high for
that the algorithms by Groebner basis are more efficient than the combinatorial attacks.
We have chosen our parameters such that the best attacks are combinatorial, the expected
complexity of the algorithms by Groebner basis is based on the article [5].

6 Advantages and Limitations

6.1 Advantages

The main advantages of RQC over existing code-based cryptosystems are:

• its IND-CPA reduction to a well-understood problem on coding theory: the Syndrome
Decoding problem,

• its immunity against attacks aiming at recovering the hidden structure of the code
being used,

• it features a null decryption failure rate.

The last item allows to achieve a tight reduction for the IND-CCA2 security of the
KEM-DEM version through the recent transformation of [17].

23

6.2 Limitations

The objects considered (codes over extension fields) may seem hard to manipulate , but in
practice the results obtained show good execution times.

References
[1] Carlos Aguilar Melchor, Olivier Blazy, Jean Christophe Deneuville, Philippe Ga-

borit, and Gilles Zémor. Efficient encryption from random quasi-cyclic codes. CoRR,
abs/1612.05572, 2016. http://arxiv.org/abs/1612.05572. 3

[2] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography with constant
input locality. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages
92–110. Springer, Heidelberg, August 2007. 10

[3] Nicolas Aragon, Philippe Gaborit, Adrien Hauteville, and Jean-Pierre Tillich. Im-
provement of generic attacks on the rank syndrome decoding problem., 2017. Pre-print,
available at https://www.unilim.fr/pages_perso/philippe.gaborit/newGRS.pdf.
15, 23

[4] Daniel Augot, Pierre Loidreau, and Gwezheneg Robert. Generalized gabidulin codes
over fields of any characteristic. arXiv preprint arXiv:1703.09125, 2017. 8, 9

[5] Luk Bettale, Jean-Charles Faugere, and Ludovic Perret. Hybrid approach for solving
multivariate systems over finite fields. Journal of Mathematical Cryptology, 3(3):177–
197, 2009. 23

[6] Jean-Christophe Deneuville, Philippe Gaborit, and Gilles Zémor. Ouroboros: A
simple, secure and efficient key exchange protocol based on coding theory. In
Tanja Lange and Tsuyoshi Takagi, editors, Post-Quantum Cryptography - 8th In-
ternational Workshop, PQCrypto 2017, Utrecht, The Netherlands, June 26-28,
2017, Proceedings, volume 10346 of Lecture Notes in Computer Science, pages
18–34. Springer, 2017. http://www.unilim.fr/pages_perso/deneuville/files/
ba43bf8d80cef2999dbf4308828213ec.pdf. 3

[7] Ernest Mukhamedovich Gabidulin. Theory of codes with maximum rank distance.
Problemy Peredachi Informatsii, 21(1):3–16, 1985. 6, 7

[8] Ernst M. Gabidulin, A. V. Paramonov, and O. V. Tretjakov. Ideals over a non-
commutative ring and thier applications in cryptology. In Donald W. Davies, editor,
EUROCRYPT’91, volume 547 of LNCS, pages 482–489. Springer, Heidelberg, April
1991. http://link.springer.com/chapter/10.1007/3-540-46416-6_41. 7

24

http://arxiv.org/abs/1612.05572
https://www.unilim.fr/pages_perso/philippe.gaborit/newGRS.pdf
http://www.unilim.fr/pages_perso/deneuville/files/ba43bf8d80cef2999dbf4308828213ec.pdf
http://www.unilim.fr/pages_perso/deneuville/files/ba43bf8d80cef2999dbf4308828213ec.pdf
http://link.springer.com/chapter/10.1007/3-540-46416-6_41

[9] Philippe Gaborit. Shorter keys for code based cryptography. In Proceedings of the
2005 International Workshop on Coding and Cryptography (WCC 2005), pages 81–91,
2005. http://www.unilim.fr/pages_perso/philippe.gaborit/shortIC.ps. 4

[10] Philippe Gaborit and Marc Girault. Lightweight code-based identification and sig-
nature. In 2007 IEEE International Symposium on Information Theory, pages 191–
195. IEEE, 2007. https://www.unilim.fr/pages_perso/philippe.gaborit/isit_
short_rev.pdf. 10

[11] Philippe Gaborit, Adrien Hauteville, and Jean-Pierre Tillich. Ranksynd a PRNG
based on rank metric. In Tsuyoshi Takagi, editor, Post-Quantum Cryptography - 7th
International Workshop, PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016, Pro-
ceedings, volume 9606 of Lecture Notes in Computer Science, pages 18–28. Springer,
2016. https://arxiv.org/pdf/1603.05128.pdf. 15

[12] Philippe Gaborit, Olivier Ruatta, and Julien Schrek. On the complexity of the rank
syndrome decoding problem. IEEE Transactions on Information Theory, 62(2):1006–
1019, 2016. https://arxiv.org/pdf/1301.1026.pdf. 15, 23

[13] Philippe Gaborit and Gilles Zémor. On the hardness of the decoding and the minimum
distance problems for rank codes. IEEE Trans. Information Theory, 62(12):7245–7252,
2016. https://arxiv.org/pdf/1404.3482.pdf. 9

[14] Pierrick Gaudry and Emmanuel Thomé. The mpfq library and implementing curve-
based key exchanges. In SPEED: software performance enhancement for encryption
and decryption, pages 49–64, 2007. 17

[15] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28(2):270–299, 1984. 11

[16] Adrien Hauteville and Jean-Pierre Tillich. New algorithms for decoding in the rank
metric and an attack on the lrpc cryptosystem. In 2015 IEEE International Symposium
on Information Theory (ISIT), pages 2747–2751. IEEE, 2015. https://arxiv.org/
pdf/1504.05431.pdf. 23

[17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the
fujisaki-okamoto transformation. Cryptology ePrint Archive, Report 2017/604, 2017.
http://eprint.iacr.org/2017/604. 3, 12, 14, 18, 23

[18] W Cary Huffman and Vera Pless. Fundamentals of error-correcting
codes. Cambridge university press, 2010. https://www.amazon.fr/
Fundamentals-Error-Correcting-Codes-Cary-Huffman/dp/0521131707. 4

[19] Françoise Levy-dit Vehel and L Perret. Algebraic decoding of rank metric codes.
Proceedings of YACC, 2006. 23

25

http://www.unilim.fr/pages_perso/philippe.gaborit/shortIC.ps
https://www.unilim.fr/pages_perso/philippe.gaborit/isit_short_rev.pdf
https://www.unilim.fr/pages_perso/philippe.gaborit/isit_short_rev.pdf
https://arxiv.org/pdf/1603.05128.pdf
https://arxiv.org/pdf/1301.1026.pdf
https://arxiv.org/pdf/1404.3482.pdf
https://arxiv.org/pdf/1504.05431.pdf
https://arxiv.org/pdf/1504.05431.pdf
http://eprint.iacr.org/2017/604
https://www.amazon.fr/Fundamentals-Error-Correcting-Codes-Cary-Huffman/dp/0521131707
https://www.amazon.fr/Fundamentals-Error-Correcting-Codes-Cary-Huffman/dp/0521131707

[20] Pierre Loidreau. Properties of codes in rank metric. arXiv preprint cs/0610057, 2006.
https://arxiv.org/pdf/cs/0610057.pdf. 5, 6

[21] Pierre Loidreau. A welch–berlekamp like algorithm for decoding gabidulin codes. In
Coding and cryptography, pages 36–45. Springer, 2006. 8, 9

[22] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo SLM Barreto. Mdpc-
mceliece: New mceliece variants from moderate density parity-check codes. In In-
formation Theory Proceedings (ISIT), 2013 IEEE International Symposium on, pages
2069–2073. IEEE, 2013. https://eprint.iacr.org/2012/409.pdf. 5, 10

[23] Oystein Ore. On a special class of polynomials. Transactions of the American Mathe-
matical Society, 35(3):559–584, 1933. 7

[24] Raphael Overbeck. A new structural attack for GPT and variants. In Mycrypt, volume
3715, pages 50–63, 2005. http://link.springer.com/chapter/10.1007/11554868_
5. 7

[25] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal
of the society for industrial and applied mathematics, 8(2):300–304, 1960. 7

[26] Nicolas Sendrier. Decoding one out of many. In International Workshop on Post-
Quantum Cryptography, pages 51–67. Springer, 2011. https://eprint.iacr.org/
2011/367.pdf. 10

[27] Danilo Silva, Frank R Kschischang, and Ralf Kotter. Communication over finite-field
matrix channels. IEEE Transactions on Information Theory, 56(3):1296–1305, 2010.
7

26

https://arxiv.org/pdf/cs/0610057.pdf
https://eprint.iacr.org/2012/409.pdf
http://link.springer.com/chapter/10.1007/11554868_5
http://link.springer.com/chapter/10.1007/11554868_5
https://eprint.iacr.org/2011/367.pdf
https://eprint.iacr.org/2011/367.pdf

	Specifications
	Preliminaries
	General definitions
	Gabidulin codes and their decoding
	Difficult problems for cryptography
	Encryption and security

	Presentation of the scheme
	Public key encryption version (RQC.PKE)
	KEM/DEM version (RQC.KEM)
	A hybrid encryption scheme (RQC.HE)

	Parameters

	Performance Analysis
	Reference Implementation
	Optimized Implementation

	Known Answer Test Values
	Security
	Known Attacks
	Generic attacks
	Algebraic attacks

	Advantages and Limitations
	Advantages
	Limitations

	References

